Menu Close

A-triangle-is-formed-by-the-three-straight-line-y-m-1-x-a-m-1-y-m-2-x-a-m-2-y-m-3-x-a-m-3-prove-that-its-orthocenter-always-lies-on-the-line-x-a-0-




Question Number 76717 by peter frank last updated on 29/Dec/19
A triangle is formed by  the three straight line  y=m_1 x+(a/m_1 )  y=m_2 x+(a/m_2 )  y=m_3 x+(a/m_3 )  prove that its orthocenter  always lies on the line  x+a=0
$${A}\:{triangle}\:{is}\:{formed}\:{by} \\ $$$${the}\:{three}\:{straight}\:{line} \\ $$$${y}={m}_{\mathrm{1}} {x}+\frac{{a}}{{m}_{\mathrm{1}} } \\ $$$${y}={m}_{\mathrm{2}} {x}+\frac{{a}}{{m}_{\mathrm{2}} } \\ $$$${y}={m}_{\mathrm{3}} {x}+\frac{{a}}{{m}_{\mathrm{3}} } \\ $$$${prove}\:{that}\:{its}\:{orthocenter} \\ $$$${always}\:{lies}\:{on}\:{the}\:{line} \\ $$$${x}+{a}=\mathrm{0} \\ $$$$ \\ $$
Answered by mr W last updated on 30/Dec/19
intersection of line 1 and line 2: P  y_P =m_1 x_P +(a/m_1 )=m_2 x_P +(a/m_2 )  ⇒x_P =(a/(m_1 m_2 ))  ⇒y_P =((a(m_1 +m_2 ))/(m_1 m_2 ))    intersection of line 1 and line 3: Q  ⇒x_Q =(a/(m_1 m_3 ))  ⇒y_Q =((a(m_1 +m_3 ))/(m_1 m_3 ))    perpendicular line from P to line 3:  y=−(1/m_3 )(x−x_P )+y_P   y=−(1/m_3 )(x−x_P )+y_P     perpendicular line from Q to line 2:  y=−(1/m_2 )(x−x_Q )+y_Q     orthocenter M:  y_M =−(1/m_3 )(x_M −x_P )+y_P =−(1/m_2 )(x_M −x_Q )+y_Q   (m_3 −m_2 )x_M =m_3 x_Q −m_2 x_P +m_2 m_3 (y_Q −y_P )  (m_3 −m_2 )x_M =(a/m_1 )−(a/m_1 )+((a(m_1 +m_3 )m_2 )/m_1 )−((a(m_1 +m_2 )m_3 )/m_1 )  (m_3 −m_2 )x_M =a(m_2 −m_3 )  ⇒x_M =−a  y_M =−(1/m_3 )(−a−(a/(m_1 m_2 )))+((a(m_1 +m_2 ))/(m_1 m_2 ))  ⇒y_M =(((1+m_1 m_2 +m_2 m_3 +m_3 m_1 )/(m_1 m_2 m_3 )))a  i.e. independent from m_1 ,m_2 ,m_3   the x−coordinate of the orthocenter   is always x_M =−a. that means it  always lies on the line x+a=0.
$${intersection}\:{of}\:{line}\:\mathrm{1}\:{and}\:{line}\:\mathrm{2}:\:{P} \\ $$$${y}_{{P}} ={m}_{\mathrm{1}} {x}_{{P}} +\frac{{a}}{{m}_{\mathrm{1}} }={m}_{\mathrm{2}} {x}_{{P}} +\frac{{a}}{{m}_{\mathrm{2}} } \\ $$$$\Rightarrow{x}_{{P}} =\frac{{a}}{{m}_{\mathrm{1}} {m}_{\mathrm{2}} } \\ $$$$\Rightarrow{y}_{{P}} =\frac{{a}\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right)}{{m}_{\mathrm{1}} {m}_{\mathrm{2}} } \\ $$$$ \\ $$$${intersection}\:{of}\:{line}\:\mathrm{1}\:{and}\:{line}\:\mathrm{3}:\:{Q} \\ $$$$\Rightarrow{x}_{{Q}} =\frac{{a}}{{m}_{\mathrm{1}} {m}_{\mathrm{3}} } \\ $$$$\Rightarrow{y}_{{Q}} =\frac{{a}\left({m}_{\mathrm{1}} +{m}_{\mathrm{3}} \right)}{{m}_{\mathrm{1}} {m}_{\mathrm{3}} } \\ $$$$ \\ $$$${perpendicular}\:{line}\:{from}\:{P}\:{to}\:{line}\:\mathrm{3}: \\ $$$${y}=−\frac{\mathrm{1}}{{m}_{\mathrm{3}} }\left({x}−{x}_{{P}} \right)+{y}_{{P}} \\ $$$${y}=−\frac{\mathrm{1}}{{m}_{\mathrm{3}} }\left({x}−{x}_{{P}} \right)+{y}_{{P}} \\ $$$$ \\ $$$${perpendicular}\:{line}\:{from}\:{Q}\:{to}\:{line}\:\mathrm{2}: \\ $$$${y}=−\frac{\mathrm{1}}{{m}_{\mathrm{2}} }\left({x}−{x}_{{Q}} \right)+{y}_{{Q}} \\ $$$$ \\ $$$${orthocenter}\:{M}: \\ $$$${y}_{{M}} =−\frac{\mathrm{1}}{{m}_{\mathrm{3}} }\left({x}_{{M}} −{x}_{{P}} \right)+{y}_{{P}} =−\frac{\mathrm{1}}{{m}_{\mathrm{2}} }\left({x}_{{M}} −{x}_{{Q}} \right)+{y}_{{Q}} \\ $$$$\left({m}_{\mathrm{3}} −{m}_{\mathrm{2}} \right){x}_{{M}} ={m}_{\mathrm{3}} {x}_{{Q}} −{m}_{\mathrm{2}} {x}_{{P}} +{m}_{\mathrm{2}} {m}_{\mathrm{3}} \left({y}_{{Q}} −{y}_{{P}} \right) \\ $$$$\left({m}_{\mathrm{3}} −{m}_{\mathrm{2}} \right){x}_{{M}} =\frac{{a}}{{m}_{\mathrm{1}} }−\frac{{a}}{{m}_{\mathrm{1}} }+\frac{{a}\left({m}_{\mathrm{1}} +{m}_{\mathrm{3}} \right){m}_{\mathrm{2}} }{{m}_{\mathrm{1}} }−\frac{{a}\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right){m}_{\mathrm{3}} }{{m}_{\mathrm{1}} } \\ $$$$\left({m}_{\mathrm{3}} −{m}_{\mathrm{2}} \right){x}_{{M}} ={a}\left({m}_{\mathrm{2}} −{m}_{\mathrm{3}} \right) \\ $$$$\Rightarrow{x}_{{M}} =−{a} \\ $$$${y}_{{M}} =−\frac{\mathrm{1}}{{m}_{\mathrm{3}} }\left(−{a}−\frac{{a}}{{m}_{\mathrm{1}} {m}_{\mathrm{2}} }\right)+\frac{{a}\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right)}{{m}_{\mathrm{1}} {m}_{\mathrm{2}} } \\ $$$$\Rightarrow{y}_{{M}} =\left(\frac{\mathrm{1}+{m}_{\mathrm{1}} {m}_{\mathrm{2}} +{m}_{\mathrm{2}} {m}_{\mathrm{3}} +{m}_{\mathrm{3}} {m}_{\mathrm{1}} }{{m}_{\mathrm{1}} {m}_{\mathrm{2}} {m}_{\mathrm{3}} }\right){a} \\ $$$${i}.{e}.\:{independent}\:{from}\:{m}_{\mathrm{1}} ,{m}_{\mathrm{2}} ,{m}_{\mathrm{3}} \\ $$$${the}\:{x}−{coordinate}\:{of}\:{the}\:{orthocenter}\: \\ $$$${is}\:{always}\:{x}_{{M}} =−{a}.\:{that}\:{means}\:{it} \\ $$$${always}\:{lies}\:{on}\:{the}\:{line}\:{x}+{a}=\mathrm{0}. \\ $$
Commented by peter frank last updated on 30/Dec/19
GODBLESS YOU
$${GODBLESS}\:{YOU} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *