Menu Close

A-triangle-is-formed-by-the-three-straight-line-y-m-1-x-a-m-1-y-m-2-x-a-m-2-y-m-3-x-a-m-3-prove-that-its-orthocenter-always-lies-on-the-line-x-a-0-




Question Number 76717 by peter frank last updated on 29/Dec/19
A triangle is formed by  the three straight line  y=m_1 x+(a/m_1 )  y=m_2 x+(a/m_2 )  y=m_3 x+(a/m_3 )  prove that its orthocenter  always lies on the line  x+a=0
Atriangleisformedbythethreestraightliney=m1x+am1y=m2x+am2y=m3x+am3provethatitsorthocenteralwaysliesonthelinex+a=0
Answered by mr W last updated on 30/Dec/19
intersection of line 1 and line 2: P  y_P =m_1 x_P +(a/m_1 )=m_2 x_P +(a/m_2 )  ⇒x_P =(a/(m_1 m_2 ))  ⇒y_P =((a(m_1 +m_2 ))/(m_1 m_2 ))    intersection of line 1 and line 3: Q  ⇒x_Q =(a/(m_1 m_3 ))  ⇒y_Q =((a(m_1 +m_3 ))/(m_1 m_3 ))    perpendicular line from P to line 3:  y=−(1/m_3 )(x−x_P )+y_P   y=−(1/m_3 )(x−x_P )+y_P     perpendicular line from Q to line 2:  y=−(1/m_2 )(x−x_Q )+y_Q     orthocenter M:  y_M =−(1/m_3 )(x_M −x_P )+y_P =−(1/m_2 )(x_M −x_Q )+y_Q   (m_3 −m_2 )x_M =m_3 x_Q −m_2 x_P +m_2 m_3 (y_Q −y_P )  (m_3 −m_2 )x_M =(a/m_1 )−(a/m_1 )+((a(m_1 +m_3 )m_2 )/m_1 )−((a(m_1 +m_2 )m_3 )/m_1 )  (m_3 −m_2 )x_M =a(m_2 −m_3 )  ⇒x_M =−a  y_M =−(1/m_3 )(−a−(a/(m_1 m_2 )))+((a(m_1 +m_2 ))/(m_1 m_2 ))  ⇒y_M =(((1+m_1 m_2 +m_2 m_3 +m_3 m_1 )/(m_1 m_2 m_3 )))a  i.e. independent from m_1 ,m_2 ,m_3   the x−coordinate of the orthocenter   is always x_M =−a. that means it  always lies on the line x+a=0.
intersectionofline1andline2:PyP=m1xP+am1=m2xP+am2xP=am1m2yP=a(m1+m2)m1m2intersectionofline1andline3:QxQ=am1m3yQ=a(m1+m3)m1m3perpendicularlinefromPtoline3:y=1m3(xxP)+yPy=1m3(xxP)+yPperpendicularlinefromQtoline2:y=1m2(xxQ)+yQorthocenterM:yM=1m3(xMxP)+yP=1m2(xMxQ)+yQ(m3m2)xM=m3xQm2xP+m2m3(yQyP)(m3m2)xM=am1am1+a(m1+m3)m2m1a(m1+m2)m3m1(m3m2)xM=a(m2m3)xM=ayM=1m3(aam1m2)+a(m1+m2)m1m2yM=(1+m1m2+m2m3+m3m1m1m2m3)ai.e.independentfromm1,m2,m3thexcoordinateoftheorthocenterisalwaysxM=a.thatmeansitalwaysliesonthelinex+a=0.
Commented by peter frank last updated on 30/Dec/19
GODBLESS YOU
GODBLESSYOU

Leave a Reply

Your email address will not be published. Required fields are marked *