A-triangle-is-formed-by-the-three-straight-line-y-m-1-x-a-m-1-y-m-2-x-a-m-2-y-m-3-x-a-m-3-prove-that-its-orthocenter-always-lies-on-the-line-x-a-0- Tinku Tara June 3, 2023 Arithmetic 0 Comments FacebookTweetPin Question Number 76717 by peter frank last updated on 29/Dec/19 Atriangleisformedbythethreestraightliney=m1x+am1y=m2x+am2y=m3x+am3provethatitsorthocenteralwaysliesonthelinex+a=0 Answered by mr W last updated on 30/Dec/19 intersectionofline1andline2:PyP=m1xP+am1=m2xP+am2⇒xP=am1m2⇒yP=a(m1+m2)m1m2intersectionofline1andline3:Q⇒xQ=am1m3⇒yQ=a(m1+m3)m1m3perpendicularlinefromPtoline3:y=−1m3(x−xP)+yPy=−1m3(x−xP)+yPperpendicularlinefromQtoline2:y=−1m2(x−xQ)+yQorthocenterM:yM=−1m3(xM−xP)+yP=−1m2(xM−xQ)+yQ(m3−m2)xM=m3xQ−m2xP+m2m3(yQ−yP)(m3−m2)xM=am1−am1+a(m1+m3)m2m1−a(m1+m2)m3m1(m3−m2)xM=a(m2−m3)⇒xM=−ayM=−1m3(−a−am1m2)+a(m1+m2)m1m2⇒yM=(1+m1m2+m2m3+m3m1m1m2m3)ai.e.independentfromm1,m2,m3thex−coordinateoftheorthocenterisalwaysxM=−a.thatmeansitalwaysliesonthelinex+a=0. Commented by peter frank last updated on 30/Dec/19 GODBLESSYOU Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-142248Next Next post: prove-that-0-pi-xsin-x-1-cos-2-x-pi-2-4- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.