Menu Close

A-vertical-pole-3m-high-is-2m-south-of-a-wall-which-runs-directly-east-and-west-The-sun-is-south-west-at-an-elevation-of-35-Find-to-the-nearest-centimeter-the-height-of-the-shadow-of-the-pole-on-th




Question Number 9709 by tawakalitu last updated on 28/Dec/16
A vertical pole 3m high is 2m south of a wall  which runs directly east and west. The sun  is south west at an elevation of 35°.  Find to the nearest centimeter the height of  the shadow of the pole on the wall.
$$\mathrm{A}\:\mathrm{vertical}\:\mathrm{pole}\:\mathrm{3m}\:\mathrm{high}\:\mathrm{is}\:\mathrm{2m}\:\mathrm{south}\:\mathrm{of}\:\mathrm{a}\:\mathrm{wall} \\ $$$$\mathrm{which}\:\mathrm{runs}\:\mathrm{directly}\:\mathrm{east}\:\mathrm{and}\:\mathrm{west}.\:\mathrm{The}\:\mathrm{sun} \\ $$$$\mathrm{is}\:\mathrm{south}\:\mathrm{west}\:\mathrm{at}\:\mathrm{an}\:\mathrm{elevation}\:\mathrm{of}\:\mathrm{35}°. \\ $$$$\mathrm{Find}\:\mathrm{to}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{centimeter}\:\mathrm{the}\:\mathrm{height}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{shadow}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pole}\:\mathrm{on}\:\mathrm{the}\:\mathrm{wall}. \\ $$
Answered by mrW last updated on 28/Dec/16
x=3−(2/(cos 45°))×tan 35°≈1.02 m=102 cm
$$\mathrm{x}=\mathrm{3}−\frac{\mathrm{2}}{\mathrm{cos}\:\mathrm{45}°}×\mathrm{tan}\:\mathrm{35}°\approx\mathrm{1}.\mathrm{02}\:\mathrm{m}=\mathrm{102}\:\mathrm{cm} \\ $$
Commented by mrW last updated on 28/Dec/16
Commented by tawakalitu last updated on 28/Dec/16
God bless you sir. I reall appreiate.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{reall}\:\mathrm{appreiate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *