Menu Close

A-wooden-stick-was-broken-randomly-into-three-pieces-What-is-the-probability-that-a-triangle-can-be-built-from-those-three-parts-




Question Number 12506 by Joel577 last updated on 24/Apr/17
A wooden stick was broken randomly into  three pieces. What is the probability that a triangle  can be built from those three parts?
$$\mathrm{A}\:\mathrm{wooden}\:\mathrm{stick}\:\mathrm{was}\:\mathrm{broken}\:\mathrm{randomly}\:\mathrm{into} \\ $$$$\mathrm{three}\:\mathrm{pieces}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{built}\:\mathrm{from}\:\mathrm{those}\:\mathrm{three}\:\mathrm{parts}? \\ $$
Answered by mrW1 last updated on 25/Apr/17
Let′s say the wooden stick is brocken   into three pieces A, B,C.  The length of wooden stick is 1.    When a wooden stick is brocken into  3 pieces, there are 4 possibilities:  1) none of the three pieces is longer  than or equal to 1/2;  2.1) one of the three pieces is longer  than or equal to 1/2, and this piece is A;  2.2) one of the three pieces is longer  than or equal to 1/2, and this piece is B;  2.3) one of the three pieces is longer  than or equal to 1/2, and this piece is C.    Only in case 1) the three pieces can  build a triangle.  ⇒probability =1/4.
$${Let}'{s}\:{say}\:{the}\:{wooden}\:{stick}\:{is}\:{brocken}\: \\ $$$${into}\:{three}\:{pieces}\:{A},\:{B},{C}. \\ $$$${The}\:{length}\:{of}\:{wooden}\:{stick}\:{is}\:\mathrm{1}. \\ $$$$ \\ $$$${When}\:{a}\:{wooden}\:{stick}\:{is}\:{brocken}\:{into} \\ $$$$\mathrm{3}\:{pieces},\:{there}\:{are}\:\mathrm{4}\:{possibilities}: \\ $$$$\left.\mathrm{1}\right)\:{none}\:{of}\:{the}\:{three}\:{pieces}\:{is}\:{longer} \\ $$$${than}\:{or}\:{equal}\:{to}\:\mathrm{1}/\mathrm{2}; \\ $$$$\left.\mathrm{2}.\mathrm{1}\right)\:{one}\:{of}\:{the}\:{three}\:{pieces}\:{is}\:{longer} \\ $$$${than}\:{or}\:{equal}\:{to}\:\mathrm{1}/\mathrm{2},\:{and}\:{this}\:{piece}\:{is}\:{A}; \\ $$$$\left.\mathrm{2}.\mathrm{2}\right)\:{one}\:{of}\:{the}\:{three}\:{pieces}\:{is}\:{longer} \\ $$$${than}\:{or}\:{equal}\:{to}\:\mathrm{1}/\mathrm{2},\:{and}\:{this}\:{piece}\:{is}\:{B}; \\ $$$$\left.\mathrm{2}.\mathrm{3}\right)\:{one}\:{of}\:{the}\:{three}\:{pieces}\:{is}\:{longer} \\ $$$${than}\:{or}\:{equal}\:{to}\:\mathrm{1}/\mathrm{2},\:{and}\:{this}\:{piece}\:{is}\:{C}. \\ $$$$ \\ $$$$\left.{Only}\:{in}\:{case}\:\mathrm{1}\right)\:{the}\:{three}\:{pieces}\:{can} \\ $$$${build}\:{a}\:{triangle}. \\ $$$$\Rightarrow{probability}\:=\mathrm{1}/\mathrm{4}. \\ $$
Answered by ajfour last updated on 24/Apr/17
•  break the stick anywhere  • for success break the larger       of the two pieces  so probability that a triangle  is formed = 1×(1/2) .
$$\bullet\:\:{break}\:{the}\:{stick}\:{anywhere} \\ $$$$\bullet\:{for}\:{success}\:{break}\:{the}\:{larger}\: \\ $$$$\:\:\:\:{of}\:{the}\:{two}\:{pieces} \\ $$$${so}\:{probability}\:{that}\:{a}\:{triangle} \\ $$$${is}\:{formed}\:=\:\mathrm{1}×\left(\mathrm{1}/\mathrm{2}\right)\:. \\ $$
Commented by mrW1 last updated on 25/Apr/17
what if the stick is broken into two  equal pieces?    break the larger of the two pieces doesnt  always mean success, e.g.  break 1 into: 1/5, 4/5  break 4/5 into: 1/5, 3/5  1/5, 1/5 and 3/5 can not build a triangle.
$${what}\:{if}\:{the}\:{stick}\:{is}\:{broken}\:{into}\:{two} \\ $$$${equal}\:{pieces}? \\ $$$$ \\ $$$${break}\:{the}\:{larger}\:{of}\:{the}\:{two}\:{pieces}\:{doesnt} \\ $$$${always}\:{mean}\:{success},\:{e}.{g}. \\ $$$${break}\:\mathrm{1}\:{into}:\:\mathrm{1}/\mathrm{5},\:\mathrm{4}/\mathrm{5} \\ $$$${break}\:\mathrm{4}/\mathrm{5}\:{into}:\:\mathrm{1}/\mathrm{5},\:\mathrm{3}/\mathrm{5} \\ $$$$\mathrm{1}/\mathrm{5},\:\mathrm{1}/\mathrm{5}\:{and}\:\mathrm{3}/\mathrm{5}\:{can}\:{not}\:{build}\:{a}\:{triangle}. \\ $$
Commented by ajfour last updated on 25/Apr/17
thanks for the light.
$${thanks}\:{for}\:{the}\:{light}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *