Menu Close

a-x-a-x-a-x-a-x-




Question Number 12130 by sujith last updated on 14/Apr/17
∫(√(a+x/a−x ))  −(√(a−x/a+x))
a+x/axax/a+x
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17
((a+x)/(a−x))=t^2 ⇒((a+x−a+x)/(a+x+a−x))=((t^2 −1)/(t^2 +1))⇒x=a((t^2 −1)/(t^2 +1))  dx=a((2t(t^2 +1)−2t(t^2 −1))/((t^2 +1)^2 ))=a((4t)/((t^2 +1)^2 ))  I=∫(t+(1/t))(a((4t)/((t^2 +1)^2 )))=4a∫(dt/(t^2 +1))=  =4atg^(−1) (t)+C=4atg^(−1) ((√((a+x)/(a−x))))+C
a+xax=t2a+xa+xa+x+ax=t21t2+1x=at21t2+1dx=a2t(t2+1)2t(t21)(t2+1)2=a4t(t2+1)2I=(t+1t)(a4t(t2+1)2)=4adtt2+1==4atg1(t)+C=4atg1(a+xax)+C
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17
t=tgθ⇒dt=(1+tg^2 θ)dθ  I=∫(dt/((1+t^2 )^2 ))=∫(((1+tg^2 θ)dθ)/((1+tg^2 θ)^2 ))=∫(dθ/(1+tg^2 θ))  =∫cos^2 θdθ=∫((1+cos2θ)/2)dθ=∫((1/2)+(1/2)cos2θ)dθ=  =(1/2)θ+(1/4)sin2θ+C=(1/2)θ+(1/2)sinθ.cosθ+C=  =(1/2)tg^(−1) t+(1/2)(t/( (√(1+t^2 )))).(1/( (√(1+t^2 ))))+C =  =(1/2)(tg^(−1) t+(t/(1+t^2 )))+C  .■
t=tgθdt=(1+tg2θ)dθI=dt(1+t2)2=(1+tg2θ)dθ(1+tg2θ)2=dθ1+tg2θ=cos2θdθ=1+cos2θ2dθ=(12+12cos2θ)dθ==12θ+14sin2θ+C=12θ+12sinθ.cosθ+C==12tg1t+12t1+t2.11+t2+C==12(tg1t+t1+t2)+C.◼

Leave a Reply

Your email address will not be published. Required fields are marked *