Question Number 12130 by sujith last updated on 14/Apr/17
$$\int\sqrt{{a}+{x}/{a}−{x}\:} \\ $$$$−\sqrt{{a}−{x}/{a}+{x}} \\ $$
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17
$$\frac{{a}+{x}}{{a}−{x}}={t}^{\mathrm{2}} \Rightarrow\frac{{a}+{x}−{a}+{x}}{{a}+{x}+{a}−{x}}=\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}\Rightarrow{x}={a}\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$${dx}={a}\frac{\mathrm{2}{t}\left({t}^{\mathrm{2}} +\mathrm{1}\right)−\mathrm{2}{t}\left({t}^{\mathrm{2}} −\mathrm{1}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }={a}\frac{\mathrm{4}{t}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${I}=\int\left({t}+\frac{\mathrm{1}}{{t}}\right)\left({a}\frac{\mathrm{4}{t}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\right)=\mathrm{4}{a}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}= \\ $$$$=\mathrm{4}{atg}^{−\mathrm{1}} \left({t}\right)+{C}=\mathrm{4}{atg}^{−\mathrm{1}} \left(\sqrt{\frac{{a}+{x}}{{a}−{x}}}\right)+{C} \\ $$
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17
$${t}={tg}\theta\Rightarrow{dt}=\left(\mathrm{1}+{tg}^{\mathrm{2}} \theta\right){d}\theta \\ $$$${I}=\int\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }=\int\frac{\left(\mathrm{1}+{tg}^{\mathrm{2}} \theta\right){d}\theta}{\left(\mathrm{1}+{tg}^{\mathrm{2}} \theta\right)^{\mathrm{2}} }=\int\frac{{d}\theta}{\mathrm{1}+{tg}^{\mathrm{2}} \theta} \\ $$$$=\int{cos}^{\mathrm{2}} \theta{d}\theta=\int\frac{\mathrm{1}+{cos}\mathrm{2}\theta}{\mathrm{2}}{d}\theta=\int\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{cos}\mathrm{2}\theta\right){d}\theta= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\theta+\frac{\mathrm{1}}{\mathrm{4}}{sin}\mathrm{2}\theta+{C}=\frac{\mathrm{1}}{\mathrm{2}}\theta+\frac{\mathrm{1}}{\mathrm{2}}{sin}\theta.{cos}\theta+{C}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{tg}^{−\mathrm{1}} {t}+\frac{\mathrm{1}}{\mathrm{2}}\frac{{t}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}+{C}\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({tg}^{−\mathrm{1}} {t}+\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)+{C}\:\:.\blacksquare \\ $$