Menu Close

ABC-is-a-triangle-with-points-A-5-5-B-5-10-C-15-5-the-cartesian-equtions-of-AB-AC-and-BC-are-respectively-x-5-y-5-x-y-5-1-Please-help-me-to-determinate-the-cartesian-equations-of-t




Question Number 78453 by mathocean1 last updated on 17/Jan/20
ABC is a triangle with points  A(−5;−5) B(−5;10) C(15;−5).  the cartesian equtions of (AB); (AC)  and (BC) are respectively  x=−5  y=−5  x+y=5    1) Please help me to determinate   the cartesian equations of the   interior bisectors of A^�  ; B^�  ; C^� .  2) Demonstrate that these bisectors   meet in some point H(25;25)  3) Give a cartesian equation of   inscrited circle  in ABC triangle.
$$\mathrm{ABC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{points} \\ $$$$\mathrm{A}\left(−\mathrm{5};−\mathrm{5}\right)\:\mathrm{B}\left(−\mathrm{5};\mathrm{10}\right)\:\mathrm{C}\left(\mathrm{15};−\mathrm{5}\right). \\ $$$$\mathrm{the}\:\mathrm{cartesian}\:\mathrm{equtions}\:\mathrm{of}\:\left(\mathrm{AB}\right);\:\left(\mathrm{AC}\right) \\ $$$$\mathrm{and}\:\left(\mathrm{BC}\right)\:\mathrm{are}\:\mathrm{respectively} \\ $$$$\mathrm{x}=−\mathrm{5} \\ $$$$\mathrm{y}=−\mathrm{5} \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{5} \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{determinate}\: \\ $$$$\mathrm{the}\:\mathrm{cartesian}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{interior}\:\mathrm{bisectors}\:\mathrm{of}\:\hat {\mathrm{A}}\:;\:\hat {\mathrm{B}}\:;\:\hat {\mathrm{C}}. \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Demonstrate}\:\mathrm{that}\:\mathrm{these}\:\mathrm{bisectors} \\ $$$$\:\mathrm{meet}\:\mathrm{in}\:\mathrm{some}\:\mathrm{point}\:\mathrm{H}\left(\mathrm{25};\mathrm{25}\right) \\ $$$$\left.\mathrm{3}\right)\:\mathrm{Give}\:\mathrm{a}\:\mathrm{cartesian}\:\mathrm{equation}\:\mathrm{of}\: \\ $$$$\mathrm{inscrited}\:\mathrm{circle}\:\:\mathrm{in}\:\mathrm{ABC}\:\mathrm{triangle}. \\ $$$$ \\ $$
Commented by mathocean1 last updated on 17/Jan/20
Hello Please sirs can you help me...
$$\mathrm{Hello}\:\mathrm{Please}\:\mathrm{sirs}\:\mathrm{can}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}… \\ $$$$ \\ $$
Commented by john santu last updated on 18/Jan/20
cartesian equation of interior bisector   A^�  : slope m = tan (π/4)=1  y= 1(x+5)+(−5) ⇒y=x
$${cartesian}\:{equation}\:{of}\:{interior}\:{bisector}\: \\ $$$$\hat {{A}}\::\:{slope}\:{m}\:=\:\mathrm{tan}\:\frac{\pi}{\mathrm{4}}=\mathrm{1} \\ $$$${y}=\:\mathrm{1}\left({x}+\mathrm{5}\right)+\left(−\mathrm{5}\right)\:\Rightarrow{y}={x} \\ $$$$ \\ $$
Commented by john santu last updated on 18/Jan/20
cartesian equation of  the interior bisector of B^�    with slope = −cot α = −2 and  passing througt B(−5,10)   ⇒y= −2(x+5)+10  y = −2x
$${cartesian}\:{equation}\:{of} \\ $$$${the}\:{interior}\:{bisector}\:{of}\:\hat {{B}}\: \\ $$$${with}\:{slope}\:=\:−\mathrm{cot}\:\alpha\:=\:−\mathrm{2}\:{and} \\ $$$${passing}\:{througt}\:{B}\left(−\mathrm{5},\mathrm{10}\right)\: \\ $$$$\Rightarrow{y}=\:−\mathrm{2}\left({x}+\mathrm{5}\right)+\mathrm{10} \\ $$$${y}\:=\:−\mathrm{2}{x} \\ $$
Commented by john santu last updated on 18/Jan/20
cartesian equation of the  interior bisector C^�    with slope = −tan β = −(1/3)  y= −(1/3)(x−15)+(−5)  y=−(1/3)x
$${cartesian}\:{equation}\:{of}\:{the} \\ $$$${interior}\:{bisector}\:\hat {{C}}\: \\ $$$${with}\:{slope}\:=\:−\mathrm{tan}\:\beta\:=\:−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${y}=\:−\frac{\mathrm{1}}{\mathrm{3}}\left({x}−\mathrm{15}\right)+\left(−\mathrm{5}\right) \\ $$$${y}=−\frac{\mathrm{1}}{\mathrm{3}}{x}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *