Menu Close

ABCD-EFGH-is-cube-X-is-midpoint-EF-if-AB-6-cm-how-distance-AX-to-BD-




Question Number 2499 by Syaka last updated on 21/Nov/15
ABCD.EFGH is cube, X is midpoint EF  if AB = 6 cm, how distance AX to BD??
ABCD.EFGHiscube,XismidpointEFifAB=6cm,howdistanceAXtoBD??
Commented by prakash jain last updated on 21/Nov/15
What is AM? Is X=M?
WhatisAM?IsX=M?
Commented by Syaka last updated on 21/Nov/15
sorry Sir, I mistake when write this question  and now I′ve corrected
sorrySir,ImistakewhenwritethisquestionandnowIvecorrected
Answered by prakash jain last updated on 21/Nov/15
Let A(0,0,0)  A=(0,0,0) B=(6,0,0) C=(6,6,0) D=(0,6,0)  E=(0,0,6) F=(6,0,6) G=(6,6,6) H=(0,6,6)  X=(3,0,6)  direction vector d_1 ^→ =BD^(→) =(−6,6,0)  BD:   ((x−6)/(−6))=(y/6)=t, z=0  x=6−6t, y=6t, z=0 (some point Q on line BD)  direction vector d_2 ^→ =AX^(→) =(3,0,6)  AX: (x/3)=(z/6)=s, y=0   x=3s, z=6s, y=0    (some point R on line AX)  QR^(→) =(3s−6+6t,−6t,6s)  To calculate the distance we need to solve  for s and t such QR^(→) ⊥BD^(→)  and QR^(→) ⊥AX^(→) .  QR^(→) •BD^(→)  =0 and QR^(→) •AX^(→) =0  Once s and t are found we can find coordinates  of Q and R and calculate the distance.  QR^(→) •BD^(→)  =0 ⇒−18s+36−36t−36t=0  s+4t=2       ....(1)    QR^(→) •AX^(→)  =0 ⇒9s−18+18t+36s=0  5s+2t=2     ....(2)  From(1) and (2) t=(4/9),s=(2/9)  x=6−((24)/9)=((10)/3), y=(8/3), z=0 ( point Q on line BD)  x=(2/3), z=(4/3), y=0    (point R on line AX)  QR^(→)  is ⊥ to both BD and AX and hence its  length gives the distance.  QR=(√(((8/3))^2 +((8/3))^2 +((4/3))^2 ))=(1/3)(√(128+16))=4
LetA(0,0,0)A=(0,0,0)B=(6,0,0)C=(6,6,0)D=(0,6,0)E=(0,0,6)F=(6,0,6)G=(6,6,6)H=(0,6,6)X=(3,0,6)directionvectord1=BD=(6,6,0)BD:x66=y6=t,z=0x=66t,y=6t,z=0(somepointQonlineBD)directionvectord2=AX=(3,0,6)AX:x3=z6=s,y=0x=3s,z=6s,y=0(somepointRonlineAX)QR=(3s6+6t,6t,6s)TocalculatethedistanceweneedtosolveforsandtsuchQRBDandQRAX.QRBD=0andQRAX=0OncesandtarefoundwecanfindcoordinatesofQandRandcalculatethedistance.QRBD=018s+3636t36t=0s+4t=2.(1)QRAX=09s18+18t+36s=05s+2t=2.(2)From(1)and(2)t=49,s=29x=6249=103,y=83,z=0(pointQonlineBD)x=23,z=43,y=0(pointRonlineAX)QRistobothBDandAXandhenceitslengthgivesthedistance.QR=(83)2+(83)2+(43)2=13128+16=4

Leave a Reply

Your email address will not be published. Required fields are marked *