Menu Close

ABCD-is-a-rectangle-such-that-AD-2AB-and-its-center-is-O-H-is-the-top-of-a-pyramid-which-has-ABCD-as-base-All-lateral-faces-are-isosceles-triangles-planes-HAB-and-HCD-are-i-have-joined-a-g




Question Number 139419 by mathocean1 last updated on 26/Apr/21
ABCD is a rectangle such that   AD=2AB and its center is O.   H is the top of a pyramid which  has ABCD as base. All lateral  faces are isosceles triangles. planes  (HAB) and (HCD) are ⊥.  i have joined a graphic.  1. show that (OH)⊥(ABC).  2. show that OH=((√3)/2)AB
$${ABCD}\:{is}\:{a}\:{rectangle}\:{such}\:{that}\: \\ $$$${AD}=\mathrm{2}{AB}\:{and}\:{its}\:{center}\:{is}\:{O}.\: \\ $$$${H}\:{is}\:{the}\:{top}\:{of}\:{a}\:{pyramid}\:{which} \\ $$$${has}\:{ABCD}\:{as}\:{base}.\:{All}\:{lateral} \\ $$$${faces}\:{are}\:{isosceles}\:{triangles}.\:{planes} \\ $$$$\left({HAB}\right)\:{and}\:\left({HCD}\right)\:{are}\:\bot. \\ $$$${i}\:{have}\:{joined}\:{a}\:{graphic}. \\ $$$$\mathrm{1}.\:{show}\:{that}\:\left({OH}\right)\bot\left({ABC}\right). \\ $$$$\mathrm{2}.\:{show}\:{that}\:{OH}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{AB} \\ $$$$ \\ $$
Commented by mathocean1 last updated on 26/Apr/21
Commented by mr W last updated on 26/Apr/21
OH=AB≠((√3)/2)AB
$${OH}={AB}\neq\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{AB} \\ $$
Commented by mr W last updated on 27/Apr/21
Commented by mr W last updated on 27/Apr/21
Commented by mr W last updated on 27/Apr/21
HE⊥HF  OH=((EF)/2)=((AD)/2)=AB
$${HE}\bot{HF} \\ $$$${OH}=\frac{{EF}}{\mathrm{2}}=\frac{{AD}}{\mathrm{2}}={AB} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *