Menu Close

About-the-Euler-Mascheroni-Constant-0-1-1-1-x-1-ln-x-dx-We-can-see-that-1-x-0-1-x-x-0-ln-x-If-x-0-and-x-1-in-the-Cartesian-Plane-this-fun




Question Number 9275 by geovane10math last updated on 27/Nov/16
About the Euler-Mascheroni Constant:                    γ = ∫_0 ^1 (1/(1 − x)) + (1/(ln x)) dx  We can see that    1− x ≠ 0 ⇔ 1 ≠ x ;  x = 0 → ln x ∄ .  If x ≠ 0 and x ≠ 1, in the Cartesian Plane,  this function has singularity x=0 and x=1.  So, I could write  f(x) = (1/(1 − x)) + (1/(ln x))  ∫_0 ^1 f(x) dx = lim_(A→0^+ )  lim_(B→1^− )  ∫_A ^B f(x) dx  ?  PS: Sorry by my worse English
AbouttheEulerMascheroniConstant:γ=0111x+1lnxdxWecanseethat1x01x;x=0lnx.Ifx0andx1,intheCartesianPlane,thisfunctionhassingularityx=0andx=1.So,Icouldwritef(x)=11x+1lnx01f(x)dx=limA0+limB1ABf(x)dx?PS:SorrybymyworseEnglish
Commented by geovane10math last updated on 27/Nov/16
Or   ∫_0 ^1 f(x) dx = ∫_0 ^(0,5) f(x) dx + ∫_(0,5) ^1 f(x) dx  = lim_(A→0^+ )  ∫_A ^(0,5) f(x) dx + lim_(B→1^− )  ∫_(0,5) ^B f(x) dx    Both ways are right???????
Or01f(x)dx=00,5f(x)dx+0,51f(x)dx=limA0+A0,5f(x)dx+limB10,5Bf(x)dxBothwaysareright???????
Answered by 123456 last updated on 28/Nov/16
you should divide it in two  suppose c=1/2 (any value 0<c<1 can be used)  ∫_0 ^1 f(x)dx=lim_(a→0^+ ) ∫_a ^c f(x)dx+lim_(a→1^− ) ∫_c ^b f(x)dx  the two part must converge in order to  it converge.  lim_(A→0^+ ) lim_(B→1^− ) ∫_A ^B f(x)dx look fine too
youshoulddivideitintwosupposec=1/2(anyvalue0<c<1canbeused)10f(x)dx=lima0+caf(x)dx+lima1bcf(x)dxthetwopartmustconvergeinordertoitconverge.limA0+limB1BAf(x)dxlookfinetoo
Commented by geovane10math last updated on 28/Nov/16
Thanks!
Thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *