Menu Close

About-the-Euler-Mascheroni-constant-lim-n-k-1-n-1-k-ln-n-Why-the-limit-converges-if-lim-n-k-1-n-1-k-ln-n-lim-n-k-1-n-1-k-lim-n-




Question Number 9237 by geovane10math last updated on 25/Nov/16
About the Euler-Mascheroni constant                   γ = lim_(n→∞)  (Σ_(k=1) ^n (1/k) − ln n)  Why the limit converges if    lim_(n→∞)  (Σ_(k=1) ^n (1/k) − ln n) = lim_(n→∞)  Σ_(k=1) ^n (1/k) − lim_(n→∞) ln n  = ∞ − ∞ ?
AbouttheEulerMascheroniconstantγ=limn(nk=11klnn)Whythelimitconvergesiflimn(nk=11klnn)=limnnk=11klimlnnn=?
Commented by geovane10math last updated on 25/Nov/16
Why ∞ − ∞ = γ ?
Why=γ?
Commented by 123456 last updated on 25/Nov/16
this limit is idertermined, consider  lim_(x→∞)    x+(−x)  lim_(x→∞) x=∞  lim_(x→∞) −x=−∞  lim_(x→∞) x+(−x)=∞−∞=?  =lim_(x→∞) 0=0  but can′t conclude that ∞−∞=0,  consider  lim_(x→∞) x+(−x+5)  lim_(x→∞) −x+5=−∞  lim_(x→∞) x+(−x+5)=∞−∞=?  =lim_(x→∞) 5=5 ⇏∞−∞=5  by similiar way (k∈R)  lim_(x→∞) x+(−x+k)=∞−∞  =k⇏∞−∞=k  so it depends of function nature, and do  not always diverge.
thislimitisidertermined,considerlimxx+(x)limxx=limxx=limxx+(x)==?=lim0x=0butcantconcludethat=0,considerlimxx+(x+5)limxx+5=limxx+(x+5)==?=lim5x=5=5bysimiliarway(kR)limxx+(x+k)==k=ksoitdependsoffunctionnature,anddonotalwaysdiverge.
Commented by geovane10math last updated on 25/Nov/16
Thanks!
Thanks!
Commented by prakash jain last updated on 25/Nov/16
The below statement is true   if both limits exist (finite values)  lim_(x→a) [f(x)−g(x)]=lim_(x→a) f(x)−lim_(x→a) g(x)
Thebelowstatementistrueifbothlimitsexist(finitevalues)limxa[f(x)g(x)]=limxaf(x)limxag(x)

Leave a Reply

Your email address will not be published. Required fields are marked *