Menu Close

According-to-WolframAlpha-k-0-n-1-x-1-k-1-x-n-2-1-x-1-x-n-1-2-1-Can-anyone-work-out-how-




Question Number 6311 by FilupSmith last updated on 23/Jun/16
According to WolframAlpha:  Π_(k=0) ^n (1−x^((−1)^k ) )=(1−x)^(⌊(n/2)⌋+1) (((x−1)/x))^(⌊((n−1)/2)⌋+1)     Can anyone work out how?
AccordingtoWolframAlpha:nk=0(1x(1)k)=(1x)n2+1(x1x)n12+1Cananyoneworkouthow?
Commented by FilupSmith last updated on 24/Jun/16
Amazing!
Amazing!
Commented by Yozzii last updated on 23/Jun/16
Let Π_(k=0) ^n (1−x^((−1)^k ) )=φ, n∈Z^≥  (x≠0)  −−−−−−−−−−−−−−−−−−−−−−−−  (I) For n being even, let n=2r, r∈Z^≥ .  r=(n/2). As k varies from k=0 to k=2r,  r terms in the product will  have k=2t−1(t∈N)⇒(1−x^((−1)^k ) )=1−(1/x)=((x−1)/x),  and the remaining r+1 terms will have  k=2t⇒ (1−x^((−1)^k ) )=1−x.  So, we may write   φ={Π_(k∈E,0≤k≤n) (1−x^((−1)^k ) )}{Π_(k∈O,0≤k≤n) (1−x^((−1)^k ) )}  φ=(1−x)^(r+1) ×(((x−1)/x))^r  or  φ=(1−x)^((n/2)+1) (((x−1)/x))^(n/2)   −−−−−−−−−−−−−−−−−−−−−−−−−−  (II) If n is odd then let n=2r+1, r∈Z^≥ .  There will be r+1 terms with odd k  and r+1 terms with even k.  So we can write, similarly to above,  φ=(1−x)^(r+1) (((x−1)/x))^(r+1)   or φ=(1−x)^(((n−1)/2)+1) (((x−1)/x))^(((n−1)/2)+1)   −−−−−−−−−−−−−−−−−−−−−−−−−  Now, if n is even then truly ⌊(n/2)⌋=(n/2)  ⇒⌊(n/2)⌋+1=(n/2)+1. So, this is an identity for part (I)   for the term (1−x)^((n/2)+1) .   Also, n−1=2r+1 for some r∈Z^≥ .  ⇒((n−1)/2)=r+(1/2)⇒⌊((n−1)/2)⌋=r⇒⌊((n−1)/2)⌋+1=r+1=((n−2)/2)+1=(n/2).  Hence, we can use ⌊((n−1)/2)⌋+1 instead of (n/2)  for the term (((x−1)/x))^(n/2) .  −−−−−−−−−−−−−−−−−−−−−−−−−  If n is odd then for n=2r+1   ⇒(n/2)=r+(1/2)⇒⌊(n/2)⌋=r⇒⌊(n/2)⌋+1=r+1=((n−1)/2)+1.  Therefore, this is an identity for  the term (1−x)^(((n−1)/2)+1)  in part (II).  For n=2r+1⇒n−1=2r⇒((n−1)/2)=r  ⇒⌊((n−1)/2)⌋=r⇒⌊((n−1)/2)⌋+1=r+1=((n−1)/2)+1.  Thus, for the term in (((x−1)/x))^(((n−1)/2)+1)   we can write (((x−1)/x))^(⌊((n−1)/2)⌋+1)  instead.  −−−−−−−−−−−−−−−−−−−−−−−−−  Notice in the both cases, (I) and (II),   we can write (1−x)^(⌊(n/2)⌋+1)  and (((x−1)/x))^(⌊((n−1)/2)⌋+1)   in the result of φ for any n∈Z^≥ .  ∴ Generally, for x≠0 and n∈Z^≥   Π_(k=0) ^n (1−x^((−1)^k ) )=(1−x)^(⌊(n/2)⌋+1) (((x−1)/x))^(⌊((n−1)/2)⌋+1) . (Shown)
Letnk=0(1x(1)k)=ϕ,nZ(x0)(I)Fornbeingeven,letn=2r,rZ.r=n2.Askvariesfromk=0tok=2r,rtermsintheproductwillhavek=2t1(tN)(1x(1)k)=11x=x1x,andtheremainingr+1termswillhavek=2t(1x(1)k)=1x.So,wemaywriteϕ={kE,0kn(1x(1)k)}{kO,0kn(1x(1)k)}ϕ=(1x)r+1×(x1x)rorϕ=(1x)n2+1(x1x)n2(II)Ifnisoddthenletn=2r+1,rZ.Therewillber+1termswithoddkandr+1termswithevenk.Sowecanwrite,similarlytoabove,ϕ=(1x)r+1(x1x)r+1orϕ=(1x)n12+1(x1x)n12+1Now,ifniseventhentrulyn2=n2n2+1=n2+1.So,thisisanidentityforpart(I)fortheterm(1x)n2+1.Also,n1=2r+1forsomerZ.n12=r+12n12=rn12+1=r+1=n22+1=n2.Hence,wecanusen12+1insteadofn2fortheterm(x1x)n/2.Ifnisoddthenforn=2r+1n2=r+12n2=rn2+1=r+1=n12+1.Therefore,thisisanidentityfortheterm(1x)n12+1inpart(II).Forn=2r+1n1=2rn12=rn12=rn12+1=r+1=n12+1.Thus,forthetermin(x1x)n12+1wecanwrite(x1x)n12+1instead.Noticeinthebothcases,(I)and(II),wecanwrite(1x)n2+1and(x1x)n12+1intheresultofϕforanynZ.Generally,forx0andnZnk=0(1x(1)k)=(1x)n2+1(x1x)n12+1.(Shown)
Commented by FilupSmith last updated on 23/Jun/16
S=(1−x)(1−(1/x))(1−x)...  S=(1−x)(((x−1)/x))(1−x)...  n=0  ⇒1−x  n=1  ⇒(((1−x)(x−1))/x)  n=2  ⇒(((1−x)^2 (x−1))/x)  n=3  ⇒(((1−x)^2 (1−x)^2 )/x^2 )  etc
S=(1x)(11x)(1x)S=(1x)(x1x)(1x)n=01xn=1(1x)(x1)xn=2(1x)2(x1)xn=3(1x)2(1x)2x2etc

Leave a Reply

Your email address will not be published. Required fields are marked *