Question Number 137251 by mnjuly1970 last updated on 31/Mar/21
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:……\mathscr{A}{dvanced}\:\:…\:\:{calculus}…… \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\mathrm{2}} {ln}\left({x}\right){ln}\left(\mathrm{1}β{x}\right){dx}=??? \\ $$$$ \\ $$
Answered by Ar Brandon last updated on 31/Mar/21
$$\phi=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}β\mathrm{x}\right)\mathrm{dx}=\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{0}} β\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{2}+\alpha} \underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}}\mathrm{dx} \\ $$$$\:\:\:=\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{0}} β\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\int\mathrm{x}^{\mathrm{2}+\alpha+\mathrm{n}} \mathrm{dx}=\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{0}} β\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{3}+\alpha+\mathrm{n}\right)} \\ $$$$\:\:\:=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{3}\right)^{\mathrm{2}} }=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{9n}}β\frac{\mathrm{1}}{\mathrm{9}\left(\mathrm{n}+\mathrm{3}\right)}β\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{n}+\mathrm{3}\right)^{\mathrm{2}} }\right) \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{9}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{n}}β\frac{\mathrm{1}}{\mathrm{n}+\mathrm{3}}\right)β\frac{\mathrm{1}}{\mathrm{3}}\left(\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }β\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\right)\right) \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{9}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)β\frac{\mathrm{1}}{\mathrm{3}}\left(\zeta\left(\mathrm{2}\right)β\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\right)\right) \\ $$$$\:\:\:=\frac{\mathrm{11}}{\mathrm{54}}β\frac{\pi^{\mathrm{2}} }{\mathrm{18}}+\frac{\mathrm{49}}{\mathrm{108}}=\frac{\mathrm{71}}{\mathrm{108}}β\frac{\pi^{\mathrm{2}} }{\mathrm{18}} \\ $$
Commented by Ar Brandon last updated on 31/Mar/21
$$\left.:\right) \\ $$
Commented by Dwaipayan Shikari last updated on 31/Mar/21
$$\left.{Even}\:{shorter}\::\right) \\ $$
Commented by mnjuly1970 last updated on 31/Mar/21
$${thanks}\:{alot}\:{mr}\:{brandon}… \\ $$
Commented by mnjuly1970 last updated on 31/Mar/21
$${grateful}… \\ $$
Commented by Ar Brandon last updated on 31/Mar/21
$$\mathrm{You}'\mathrm{re}\:\mathrm{welcome},\:\mathrm{Sir}\:! \\ $$
Commented by Dwaipayan Shikari last updated on 31/Mar/21
$${But}\:,\:{whenever}\:{you}\:{are}\:{calculating}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\pi} \left(\mathrm{1}β{x}\right)^{{e}} {log}\left({x}\right){log}\left(\mathrm{1}β{x}\right)\:{dx} \\ $$$$\left.{you}\:{need}\:{this}\:\nu'\left({e}+\mathrm{1},\pi+\mathrm{1}\right)\:;β\right) \\ $$
Commented by Ar Brandon last updated on 31/Mar/21
OK, bro. Thanks ππ
Answered by Dwaipayan Shikari last updated on 31/Mar/21
$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {log}\left({x}\right){log}\left(\mathrm{1}β{x}\right){dx}=\nu'\left(\mathrm{3},\mathrm{1}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}β\mathrm{1}} \left(\mathrm{1}β{x}\right)^{{b}β\mathrm{1}} {dx}=\frac{\Gamma\left({a}\right)\Gamma\left({b}\right)}{\Gamma\left({a}+{b}\right)}=\nu\left({a},{b}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}β\mathrm{1}} \left(\mathrm{1}β{x}\right)^{{b}β\mathrm{1}} {log}\left(\mathrm{1}β{x}\right){log}\left({x}\right)=\nu'\left({a},{b}\right) \\ $$$$=\frac{\partial}{\partial{a}}\left(\frac{\Gamma\left({a}\right)\Gamma'\left(\mathrm{1}\right)β\psi\left({a}+\mathrm{1}\right)\Gamma\left(\mathrm{1}\right)\Gamma\left({a}\right)}{\Gamma\left({a}+\mathrm{1}\right)}\right) \\ $$$$=\frac{\partial}{\partial{a}}\left(\frac{β\gamma}{{a}}β\frac{\psi\left({a}+\mathrm{1}\right)}{{a}}\right)=\frac{\gamma}{{a}^{\mathrm{2}} }+\frac{\psi\left(\mathrm{1}+{a}\right)}{{a}^{\mathrm{2}} }β\frac{\psi'\left({a}+\mathrm{1}\right)}{{a}}\:\mid_{{a}=\mathrm{3}} \\ $$$$=\frac{\gamma}{\mathrm{9}}+\frac{\psi\left(\mathrm{4}\right)}{\mathrm{9}}β\frac{\psi'\left(\mathrm{4}\right)}{{a}}=\frac{\gammaβ\gamma+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}}{\mathrm{9}}β\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{6}}β\mathrm{1}β\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }β\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\right) \\ $$$$=\frac{\mathrm{11}}{\mathrm{54}}+\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{49}}{\mathrm{36}}\right)β\frac{\pi^{\mathrm{2}} }{\mathrm{18}}=\frac{\mathrm{71}}{\mathrm{108}}β\frac{\pi^{\mathrm{2}} }{\mathrm{18}} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 31/Mar/21
$$\:\:{thank}\:{you}\:{so}\:{much}\:{mr}\:{payan}.. \\ $$
Commented by mnjuly1970 last updated on 31/Mar/21
$$\:{very}\:{nice}.. \\ $$