Menu Close

Advanced-calculus-0-1-x-2-ln-x-ln-1-x-dx-




Question Number 137251 by mnjuly1970 last updated on 31/Mar/21
               ......Advanced  ...  calculus......      𝛗=∫_0 ^( 1) x^2 ln(x)ln(1−x)dx=???
Advancedcalculusϕ=01x2ln(x)ln(1x)dx=???
Answered by Ar Brandon last updated on 31/Mar/21
φ=∫_0 ^1 x^2 ln(x)ln(1−x)dx=(∂/∂α)∣_(α=0) −∫_0 ^1 x^(2+α) Σ_(n=1) ^∞ (x^n /n)dx     =(∂/∂α)∣_(α=0) −Σ_(n=1) ^∞ (1/n)∫x^(2+α+n) dx=(∂/∂α)∣_(α=0) −Σ_(n=1) ^∞ (1/(n(3+α+n)))     =Σ_(n=1) ^∞ (1/(n(n+3)^2 ))=Σ_(n=1) ^∞ ((1/(9n))−(1/(9(n+3)))−(1/(3(n+3)^2 )))     =(1/9)Σ_(n=1) ^∞ ((1/n)−(1/(n+3)))−(1/3)(Σ_(n=1) ^∞ (1/n^2 )−(1+(1/2^2 )+(1/3^2 )))     =(1/9)(1+(1/2)+(1/3))−(1/3)(ζ(2)−(1+(1/2^2 )+(1/3^2 )))     =((11)/(54))−(π^2 /(18))+((49)/(108))=((71)/(108))−(π^2 /(18))
ϕ=01x2ln(x)ln(1x)dx=αα=001x2+αn=1xnndx=αα=0n=11nx2+α+ndx=αα=0n=11n(3+α+n)=n=11n(n+3)2=n=1(19n19(n+3)13(n+3)2)=19n=1(1n1n+3)13(n=11n2(1+122+132))=19(1+12+13)13(ζ(2)(1+122+132))=1154π218+49108=71108π218
Commented by Ar Brandon last updated on 31/Mar/21
:)
:)
Commented by Dwaipayan Shikari last updated on 31/Mar/21
Even shorter :)
Evenshorter:)
Commented by mnjuly1970 last updated on 31/Mar/21
thanks alot mr brandon...
thanksalotmrbrandon
Commented by mnjuly1970 last updated on 31/Mar/21
grateful...
grateful
Commented by Ar Brandon last updated on 31/Mar/21
You′re welcome, Sir !
Yourewelcome,Sir!
Commented by Dwaipayan Shikari last updated on 31/Mar/21
But , whenever you are calculating   ∫_0 ^1 x^π (1−x)^e log(x)log(1−x) dx  you need this ν′(e+1,π+1) ;−)
But,wheneveryouarecalculating01xπ(1x)elog(x)log(1x)dxyouneedthisν(e+1,π+1);)
Commented by Ar Brandon last updated on 31/Mar/21
OK, bro. Thanks 😊😃
OK, bro. Thanks 😊😃
Answered by Dwaipayan Shikari last updated on 31/Mar/21
∫_0 ^1 x^2 log(x)log(1−x)dx=ν′(3,1)  ∫_0 ^1 x^(a−1) (1−x)^(b−1) dx=((Γ(a)Γ(b))/(Γ(a+b)))=ν(a,b)  ∫_0 ^1 x^(a−1) (1−x)^(b−1) log(1−x)log(x)=ν′(a,b)  =(∂/∂a)(((Γ(a)Γ′(1)−ψ(a+1)Γ(1)Γ(a))/(Γ(a+1))))  =(∂/∂a)(((−γ)/a)−((ψ(a+1))/a))=(γ/a^2 )+((ψ(1+a))/a^2 )−((ψ′(a+1))/a) ∣_(a=3)   =(γ/9)+((ψ(4))/9)−((ψ′(4))/a)=((γ−γ+1+(1/2)+(1/3))/9)−(1/3)((π^2 /6)−1−(1/2^2 )−(1/3^2 ))  =((11)/(54))+(1/3)(((49)/(36)))−(π^2 /(18))=((71)/(108))−(π^2 /(18))
01x2log(x)log(1x)dx=ν(3,1)01xa1(1x)b1dx=Γ(a)Γ(b)Γ(a+b)=ν(a,b)01xa1(1x)b1log(1x)log(x)=ν(a,b)=a(Γ(a)Γ(1)ψ(a+1)Γ(1)Γ(a)Γ(a+1))=a(γaψ(a+1)a)=γa2+ψ(1+a)a2ψ(a+1)aa=3=γ9+ψ(4)9ψ(4)a=γγ+1+12+13913(π261122132)=1154+13(4936)π218=71108π218
Commented by mnjuly1970 last updated on 31/Mar/21
  thank you so much mr payan..
thankyousomuchmrpayan..
Commented by mnjuly1970 last updated on 31/Mar/21
 very nice..
verynice..

Leave a Reply

Your email address will not be published. Required fields are marked *