Menu Close

advanced-calculus-0-pi-2-x-tan-x-1-2-dx-




Question Number 136572 by mnjuly1970 last updated on 23/Mar/21
             ....advanced    calculus....          𝛗=∫_0 ^( (π/2)) x.(tan(x))^(1/2) dx=??
.advancedcalculus.\boldsymbolϕ=0π2x.(tan(x))12dx=??
Commented by Olaf last updated on 24/Mar/21
Do you know if it can be calculated  sir ? I can calculate ∫_0 ^(π/2) (√(tanx)) dx  but not ∫_0 ^(π/2) x(√(tanx)) dx
Doyouknowifitcanbecalculatedsir?Icancalculate0π2tanxdxbutnot0π2xtanxdx
Answered by Dwaipayan Shikari last updated on 24/Mar/21
∫_0 ^(π/2) x(√(tanx)) dx    ∫_0 ^(π/2) (√(tanx)) dx=((Γ((3/4))Γ((1/4)))/(2Γ(1)))=(π/( (√2)))  =(π/2)((π/( (√2))))−∫_0 ^(π/2) ∫(√(tanx)) dx  ∫(√(tanx)) dx=2∫(t^2 /(1+t^4 ))dt=(1/( (√i)))tan^(−1) ((t/( (√i))))−(1/( (√(−i))))tan^(−1) ((t/( (√(−i)))))  =(π^2 /(2(√2)))−∫_0 ^(π/2) (1/( (√i)))tan^(−1) ((t/( (√i))))−(1/( (√(−i))))tan^(−1) ((t/( (√(−i)))))dt  =(π^2 /(2(√2)))−(π/2)(e^(−(π/4)i) tan^(−1) (π/(2(√i)))−e^((π/4)i) tan^(−1) (π/(2(√(−i)))))+(1/(2i))log(((4i−π^2 )/(4i+π^2 )))
0π2xtanxdx0π2tanxdx=Γ(34)Γ(14)2Γ(1)=π2=π2(π2)0π2tanxdxtanxdx=2t21+t4dt=1itan1(ti)1itan1(ti)=π2220π21itan1(ti)1itan1(ti)dt=π222π2(eπ4itan1π2ieπ4itan1π2i)+12ilog(4iπ24i+π2)
Commented by mnjuly1970 last updated on 24/Mar/21
thanks alot mr payan...grateful..
thanksalotmrpayangrateful..
Answered by Ñï= last updated on 24/Mar/21
φ=∫_0 ^(π/2) x(√(tan x))dx=2∫_0 ^∞ (t^2 /(1+t^4 ))tan^(−1) t^2 dt  φ(s)=2∫_0 ^∞ (t^2 /(1+t^4 ))tan^(−1) (st^2 )dt  φ(s)′=2∫_0 ^∞ (t^4 /((1+t^4 )(1+s^2 t^4 )))dt=2∫_0 ^∞ ((1/(1+s^2 t^4 ))−(1/(1+t^4 )))(1/(1−s^2 ))dt  =(2/(1−s^2 ))∫_0 ^∞ {(s^(−1/2) /4)∙(u^(−3/4) /(1+u))−(1/4)∙(u^(−3/4) /(1+u))}du  =(1/(2(1−s^2 )))(s^(−1/2) −1)Γ((1/4))Γ((3/4))  =(π/( (√2)(1−s^2 )))(s^(−1/2) −1)  φ(1)=(π/( (√2)))∫_0 ^1 ((s^(−1/2) −1)/(1−s^2 ))ds=^(s^(1/2) →s) (π/( (√2)))∫_0 ^1 ((1/(1+s))+((1−s)/(1+s^2 )))ds=(π/( (√2)))((1/2)ln2+(π/4))
ϕ=0π/2xtanxdx=20t21+t4tan1t2dtϕ(s)=20t21+t4tan1(st2)dtϕ(s)=20t4(1+t4)(1+s2t4)dt=20(11+s2t411+t4)11s2dt=21s20{s1/24u3/41+u14u3/41+u}du=12(1s2)(s1/21)Γ(14)Γ(34)=π2(1s2)(s1/21)ϕ(1)=π201s1/211s2ds=s1/2sπ201(11+s+1s1+s2)ds=π2(12ln2+π4)
Commented by mnjuly1970 last updated on 24/Mar/21
   thanks alot....  very nice sir ???
thanksalot.verynicesir???
Commented by Ñï= last updated on 24/Mar/21
the other people did it.i upload picture,but  not display.
theotherpeopledidit.iuploadpicture,butnotdisplay.
Commented by mnjuly1970 last updated on 24/Mar/21
    mercey ...thank you so much..
merceythankyousomuch..
Answered by maths mind last updated on 24/Mar/21
f(a,b)=∫_0 ^π ((cos(ax))/(sin^b (x)))dx=∫_0 ^π 2^(b−1) i^b ((e^(iax) +e^(−iax) )/((1−e^(−2ix) )^b )).e^(−ibx) dx  =2^(b−1) i^b ∫_0 ^π ((e^(i(a−b)x) +e^(−i(a+b)x) )/((1−e^(−2ix) )^b ))dx  let g(s)=∫_0 ^π (e^(isx) /((1−e^(−2ix) )^b ))dx=  (1/((1−e^(−2ix) )^b ))=1+Σ_(n≥1) ((Π_(k=0) ^(n−1) (b+k))/(n!))e^(−2inx)   g(s)=∫_0 ^π e^(isx) dx+Σ_(n≥1) (((b)_n )/(n!))∫_0 ^π e^(x(−2in+is)) dx  =((e^(isπ) −1)/(is))+Σ_(n≥1) (((b)_n )/(n!)).((e^(iπs) −1)/(−2in+is))  f(a,b)=2^(b−1) i^b (g(i(a−b))+g(−i(a+b)))  =2^(b−1) .i^(b−1) (((e^(i(a−b)𝛑) −1)/(a−b))+((e^(−i(a+b)) −1)/(−a−b)))  +Σ_(n≥1) (((b)_n )/(n!)).((1−e^(iπ(a−b)) )/(2n+b−a))+Σ_(n≥1) (((b)_n )/(n!)).((1−e^(iπ(−a−b)) )/(2n+a+b))  =2^(b−1) i^(b−1) ((1/(b−a))+Σ_(n≥1) (((b)_n )/(n!)).(1/(2(n+(((b−a))/2)))))(1−e^(iπ(a−b)) )+  2^(b−1) i^(b−1) ((1/(a+b))+Σ_(n≥1) (((b)_n )/(n!)).(1/(2(n+(((a+b))/2)))))(−e^(−iπ(a+b)) +1)  =2^(b−1) i^(b−1) ((1/(b−a))+Σ_(n≥1) (((b)_n (((b−a)/2))_n )/((a−b)(((−a+b+2)/2)))))(−e^(iπ(a−b)) +1)  +2^(b−1) i^(b−1) ((1/(a+b))+Σ_(n≥1) (((b)_n (((a+b)/2))_n )/((a+b)(((a+b+2)/2))_n )))(−e^(−iπ(a+b)) +1)  =2^(b−1) i^(b−1) ._2 F_1 (b,((b−a)/2);((b−a+2)/2);1).((1−e^(iπ(a−b)) )/(b−a))  +2^(b−1) i^(b−1) ._2 F_1 (b,((a+b)/2);((a+b+2)/2);1).((1−e^(−iπ(a+b)) )/(a+b))   _2 F_1 (a,b;c,1)=((Γ(c)Γ(c−a−b))/(Γ(c−a)Γ(c−b)))  wr get 2^(b−1) i^(b−1) (((Γ(((b−a+2)/2))Γ(1−b))/(Γ(1−(a/2)−(b/2)))))((1−e^(iπ(a−b)) )/(b−a))  +2^(b−1) i^(b−1) (((Γ(((a+b+2)/2))Γ(1−b))/(Γ(1+((a−b)/2))))).((1−e^(−i𝛑(a+b)) )/(a+b))  =2^(b−1) i^(b−1) .((Γ(1−b)Γ(((a+b)/2)))/(Γ(1+((a−b)/2)))).((1−e^(−i𝛑(a+b)) )/2)+((Γ(1−b)Γ(((b−a)/2)))/(Γ(1−((a+b)/2)))).((1−e^(iπ(a−b)) )/2)  =2^(b−1) .i^(b−1) (((Γ(1−b))/(Γ(1+((a−b)/2))Γ(1−((a+b)/2)))).iπe^(−i(π/2)(a+b)) )  +2^(b−1) i^(b−1) (((Γ(1−b))/(Γ(1+((a−b)/2))Γ(1−((a+b)/2)))).iπe^(i(π/2)(((a−b)/2))) )  =2^(b−1) .((Γ(1−b).2πcos(((πa)/2)))/(Γ(1+((a−b)/2))Γ(1−((a+b)/2))))=π((2^b cos(((πa)/2))Γ(1−b))/(Γ(1+((a−b)/2))Γ(1−((a+b)/2))))  φ=∫_0 ^(π/2) x(√(tg(x)))dx=(√2)∫_0 ^π ((xsin(x))/( (√(sin(2x)))))dx  =(1/(2(√2)))∫_0 ^(π/2) ((ysin((y/2)))/( (√(sin(y)))))    f(a,b)=∫_0 ^π ((cos(ax))/(sin^b (x)))dx,∂^a f(a,b)=∫_0 ^π ((−xsin(ax))/(sin^b (x)))dx  (a,b)=((1/2);(1/2)) we get φ=−(1/(2(√2)))(∂f/∂a)((1/2);(1/2))=(π/(4sin((π/4))))(Ψ((1/2))−Ψ((1/4)))  =(π/(2(√2)))(−2ln(2)−𝛄+(π/2)+3ln(2)+γ)=(π^2 /(4(√2)))+((πln(2))/(2(√2)))=∫_0 ^(π/2) x(√(tan(x)))dx
f(a,b)=0πcos(ax)sinb(x)dx=0π2\boldsymbolb1\boldsymboli\boldsymbolb\boldsymbole\boldsymboliax+\boldsymbole\boldsymboliax(1\boldsymbole2\boldsymbolix)\boldsymbolb.\boldsymbole\boldsymbolibx\boldsymboldx=2\boldsymbolb1\boldsymboli\boldsymbolb0πei(ab)x+ei(a+b)x(1e2ix)bdxletg(s)=0πeisx(1e2ix)bdx=1(1e2ix)b=1+n1n1k=0(b+k)n!e2inxg(s)=0πeisxdx+n1(b)nn!0πex(2in+is)dx=eisπ1is+n1(b)nn!.eiπs12in+isf(a,b)=2b1ib(g(i(ab))+g(i(a+b)))=2b1.ib1(\boldsymbole\boldsymboli(\boldsymbola\boldsymbolb)\boldsymbolπ1a\boldsymbolb+ei(a+b)1ab)+n1(b)nn!.1eiπ(a\boldsymbolb)2\boldsymboln+\boldsymbolba+n1(b)nn!.1eiπ(ab)2n+a+b=2b1ib1(1ba+n1(b)nn!.12(n+(ba)2))(1eiπ(ab))+2b1ib1(1a+b+n1(b)nn!.12(n+(a+b)2))(eiπ(a+b)+1)=2b1ib1(1ba+n1(b)n(ba2)n(ab)(a+b+22))(eiπ(ab)+1)+2b1ib1(1a+b+n1(b)n(a+b2)n(a+b)(a+b+22)n)(eiπ(a+b)+1)=2b1ib1.2F1(b,ba2;ba+22;1).1eiπ(ab)ba+2b1ib1.2F1(b,a+b2;a+b+22;1).1eiπ(a+b)a+b2F1(a,b;c,1)=Γ(c)Γ(cab)Γ(ca)Γ(cb)wrget2b1ib1(Γ(ba+22)Γ(1b)Γ(1a2b2))1eiπ(ab)ba+2b1ib1(Γ(a+b+22)Γ(1b)Γ(1+ab2)).1\boldsymbole\boldsymboliπ(a+b)a+b=2b1ib1.Γ(1b)Γ(a+b2)Γ(1+ab2).1e\boldsymboliπ(a+b)2+Γ(1b)Γ(ba2)Γ(1a+b2).1eiπ(ab)2=2b1.ib1(Γ(1b)Γ(1+ab2)Γ(1a+b2).iπeiπ2(a+b))+2b1ib1(Γ(1b)Γ(1+ab2)Γ(1a+b2).iπeiπ2(ab2))=2b1.Γ(1b).2πcos(πa2)Γ(1+ab2)Γ(1a+b2)=π2bcos(πa2)Γ(1b)Γ(1+ab2)Γ(1a+b2)ϕ=0π2xtg(x)dx=20πxsin(x)sin(2x)dx=1220π2ysin(y2)sin(y)f(a,b)=0πcos(ax)sinb(x)dx,af(a,b)=0πxsin(ax)sinb(x)dx(a,b)=(12;12)wegetϕ=122fa(12;12)=π4sin(π4)(Ψ(12)Ψ(14))=π22(2ln(2)\boldsymbolγ+π2+3ln(2)+γ)=π242+πln(2)22=0π2xtan(x)dx
Commented by mnjuly1970 last updated on 24/Mar/21
thank you so much ..
thankyousomuch..thankyousomuch..

Leave a Reply

Your email address will not be published. Required fields are marked *