Question Number 136572 by mnjuly1970 last updated on 23/Mar/21
$$\:\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}\:\:\:\:{calculus}…. \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {x}.\left({tan}\left({x}\right)\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx}=?? \\ $$$$ \\ $$
Commented by Olaf last updated on 24/Mar/21
$$\mathrm{Do}\:\mathrm{you}\:\mathrm{know}\:\mathrm{if}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{calculated} \\ $$$$\mathrm{sir}\:?\:\mathrm{I}\:\mathrm{can}\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{tan}{x}}\:{dx} \\ $$$$\mathrm{but}\:\mathrm{not}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {x}\sqrt{\mathrm{tan}{x}}\:{dx} \\ $$
Answered by Dwaipayan Shikari last updated on 24/Mar/21
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {x}\sqrt{{tanx}}\:{dx}\:\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{{tanx}}\:{dx}=\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{2}\Gamma\left(\mathrm{1}\right)}=\frac{\pi}{\:\sqrt{\mathrm{2}}} \\ $$$$=\frac{\pi}{\mathrm{2}}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)β\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int\sqrt{{tanx}}\:{dx} \\ $$$$\int\sqrt{{tanx}}\:{dx}=\mathrm{2}\int\frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt}=\frac{\mathrm{1}}{\:\sqrt{{i}}}{tan}^{β\mathrm{1}} \left(\frac{{t}}{\:\sqrt{{i}}}\right)β\frac{\mathrm{1}}{\:\sqrt{β{i}}}{tan}^{β\mathrm{1}} \left(\frac{{t}}{\:\sqrt{β{i}}}\right) \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{2}}}β\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{{i}}}{tan}^{β\mathrm{1}} \left(\frac{{t}}{\:\sqrt{{i}}}\right)β\frac{\mathrm{1}}{\:\sqrt{β{i}}}{tan}^{β\mathrm{1}} \left(\frac{{t}}{\:\sqrt{β{i}}}\right){dt} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{2}}}β\frac{\pi}{\mathrm{2}}\left({e}^{β\frac{\pi}{\mathrm{4}}{i}} {tan}^{β\mathrm{1}} \frac{\pi}{\mathrm{2}\sqrt{{i}}}β{e}^{\frac{\pi}{\mathrm{4}}{i}} {tan}^{β\mathrm{1}} \frac{\pi}{\mathrm{2}\sqrt{β{i}}}\right)+\frac{\mathrm{1}}{\mathrm{2}{i}}{log}\left(\frac{\mathrm{4}{i}β\pi^{\mathrm{2}} }{\mathrm{4}{i}+\pi^{\mathrm{2}} }\right) \\ $$
Commented by mnjuly1970 last updated on 24/Mar/21
$${thanks}\:{alot}\:{mr}\:{payan}…{grateful}.. \\ $$
Answered by ΓΓ―= last updated on 24/Mar/21
$$\phi=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {x}\sqrt{\mathrm{tan}\:{x}}{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }\mathrm{tan}^{β\mathrm{1}} {t}^{\mathrm{2}} {dt} \\ $$$$\phi\left({s}\right)=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }\mathrm{tan}\:^{β\mathrm{1}} \left({st}^{\mathrm{2}} \right){dt} \\ $$$$\phi\left({s}\right)'=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{4}} }{\left(\mathrm{1}+{t}^{\mathrm{4}} \right)\left(\mathrm{1}+{s}^{\mathrm{2}} {t}^{\mathrm{4}} \right)}{dt}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{1}+{s}^{\mathrm{2}} {t}^{\mathrm{4}} }β\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{4}} }\right)\frac{\mathrm{1}}{\mathrm{1}β{s}^{\mathrm{2}} }{dt} \\ $$$$=\frac{\mathrm{2}}{\mathrm{1}β{s}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \left\{\frac{{s}^{β\mathrm{1}/\mathrm{2}} }{\mathrm{4}}\centerdot\frac{{u}^{β\mathrm{3}/\mathrm{4}} }{\mathrm{1}+{u}}β\frac{\mathrm{1}}{\mathrm{4}}\centerdot\frac{{u}^{β\mathrm{3}/\mathrm{4}} }{\mathrm{1}+{u}}\right\}{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}β{s}^{\mathrm{2}} \right)}\left({s}^{β\mathrm{1}/\mathrm{2}} β\mathrm{1}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$$=\frac{\pi}{\:\sqrt{\mathrm{2}}\left(\mathrm{1}β{s}^{\mathrm{2}} \right)}\left({s}^{β\mathrm{1}/\mathrm{2}} β\mathrm{1}\right) \\ $$$$\phi\left(\mathrm{1}\right)=\frac{\pi}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{s}^{β\mathrm{1}/\mathrm{2}} β\mathrm{1}}{\mathrm{1}β{s}^{\mathrm{2}} }{ds}\overset{{s}^{\mathrm{1}/\mathrm{2}} \rightarrow{s}} {=}\frac{\pi}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+{s}}+\frac{\mathrm{1}β{s}}{\mathrm{1}+{s}^{\mathrm{2}} }\right){ds}=\frac{\pi}{\:\sqrt{\mathrm{2}}}\left(\frac{\mathrm{1}}{\mathrm{2}}{ln}\mathrm{2}+\frac{\pi}{\mathrm{4}}\right) \\ $$
Commented by mnjuly1970 last updated on 24/Mar/21
$$\:\:\:{thanks}\:{alot}…. \\ $$$${very}\:{nice}\:{sir}\:??? \\ $$
Commented by ΓΓ―= last updated on 24/Mar/21
$${the}\:{other}\:{people}\:{did}\:{it}.{i}\:{upload}\:{picture},{but}\:\:{not}\:{display}. \\ $$
Commented by mnjuly1970 last updated on 24/Mar/21
$$\:\:\:\:{mercey}\:…{thank}\:{you}\:{so}\:{much}.. \\ $$
Answered by maths mind last updated on 24/Mar/21
$${f}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\pi} \frac{{cos}\left({ax}\right)}{{sin}^{{b}} \left({x}\right)}{dx}=\int_{\mathrm{0}} ^{\pi} \mathrm{2}^{\boldsymbol{{b}}β\mathrm{1}} \boldsymbol{{i}}^{\boldsymbol{{b}}} \frac{\boldsymbol{{e}}^{\boldsymbol{{iax}}} +\boldsymbol{{e}}^{β\boldsymbol{{iax}}} }{\left(\mathrm{1}β\boldsymbol{{e}}^{β\mathrm{2}\boldsymbol{{ix}}} \right)^{\boldsymbol{{b}}} }.\boldsymbol{{e}}^{β\boldsymbol{{ibx}}} \boldsymbol{{dx}} \\ $$$$=\mathrm{2}^{\boldsymbol{{b}}β\mathrm{1}} \boldsymbol{{i}}^{\boldsymbol{{b}}} \int_{\mathrm{0}} ^{\pi} \frac{{e}^{{i}\left({a}β{b}\right){x}} +{e}^{β{i}\left({a}+{b}\right){x}} }{\left(\mathrm{1}β{e}^{β\mathrm{2}{ix}} \right)^{{b}} }{dx} \\ $$$${let}\:{g}\left({s}\right)=\int_{\mathrm{0}} ^{\pi} \frac{{e}^{{isx}} }{\left(\mathrm{1}β{e}^{β\mathrm{2}{ix}} \right)^{{b}} }{dx}= \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}β{e}^{β\mathrm{2}{ix}} \right)^{{b}} }=\mathrm{1}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\underset{{k}=\mathrm{0}} {\overset{{n}β\mathrm{1}} {\prod}}\left({b}+{k}\right)}{{n}!}{e}^{β\mathrm{2}{inx}} \\ $$$${g}\left({s}\right)=\int_{\mathrm{0}} ^{\pi} {e}^{{isx}} {dx}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left({b}\right)_{{n}} }{{n}!}\int_{\mathrm{0}} ^{\pi} {e}^{{x}\left(β\mathrm{2}{in}+{is}\right)} {dx} \\ $$$$=\frac{{e}^{{is}\pi} β\mathrm{1}}{{is}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left({b}\right)_{{n}} }{{n}!}.\frac{{e}^{{i}\pi{s}} β\mathrm{1}}{β\mathrm{2}{in}+{is}} \\ $$$${f}\left({a},{b}\right)=\mathrm{2}^{{b}β\mathrm{1}} {i}^{{b}} \left({g}\left({i}\left({a}β{b}\right)\right)+{g}\left(β{i}\left({a}+{b}\right)\right)\right) \\ $$$$=\mathrm{2}^{{b}β\mathrm{1}} .{i}^{{b}β\mathrm{1}} \left(\frac{\boldsymbol{{e}}^{\boldsymbol{{i}}\left(\boldsymbol{{a}}β\boldsymbol{{b}}\right)\boldsymbol{\pi}} β\mathrm{1}}{{a}β\boldsymbol{{b}}}+\frac{{e}^{β{i}\left({a}+{b}\right)} β\mathrm{1}}{β{a}β{b}}\right) \\ $$$$+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left({b}\right)_{{n}} }{{n}!}.\frac{\mathrm{1}β{e}^{{i}\pi\left({a}β\boldsymbol{{b}}\right)} }{\mathrm{2}\boldsymbol{{n}}+\boldsymbol{{b}}β{a}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left({b}\right)_{{n}} }{{n}!}.\frac{\mathrm{1}β{e}^{{i}\pi\left(β{a}β{b}\right)} }{\mathrm{2}{n}+{a}+{b}} \\ $$$$=\mathrm{2}^{{b}β\mathrm{1}} {i}^{{b}β\mathrm{1}} \left(\frac{\mathrm{1}}{{b}β{a}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left({b}\right)_{{n}} }{{n}!}.\frac{\mathrm{1}}{\mathrm{2}\left({n}+\frac{\left({b}β{a}\right)}{\mathrm{2}}\right)}\right)\left(\mathrm{1}β{e}^{{i}\pi\left({a}β{b}\right)} \right)+ \\ $$$$\mathrm{2}^{{b}β\mathrm{1}} {i}^{{b}β\mathrm{1}} \left(\frac{\mathrm{1}}{{a}+{b}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left({b}\right)_{{n}} }{{n}!}.\frac{\mathrm{1}}{\mathrm{2}\left({n}+\frac{\left({a}+{b}\right)}{\mathrm{2}}\right)}\right)\left(β{e}^{β{i}\pi\left({a}+{b}\right)} +\mathrm{1}\right) \\ $$$$=\mathrm{2}^{{b}β\mathrm{1}} {i}^{{b}β\mathrm{1}} \left(\frac{\mathrm{1}}{{b}β{a}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left({b}\right)_{{n}} \left(\frac{{b}β{a}}{\mathrm{2}}\right)_{{n}} }{\left({a}β{b}\right)\left(\frac{β{a}+{b}+\mathrm{2}}{\mathrm{2}}\right)}\right)\left(β{e}^{{i}\pi\left({a}β{b}\right)} +\mathrm{1}\right) \\ $$$$+\mathrm{2}^{{b}β\mathrm{1}} {i}^{{b}β\mathrm{1}} \left(\frac{\mathrm{1}}{{a}+{b}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left({b}\right)_{{n}} \left(\frac{{a}+{b}}{\mathrm{2}}\right)_{{n}} }{\left({a}+{b}\right)\left(\frac{{a}+{b}+\mathrm{2}}{\mathrm{2}}\right)_{{n}} }\right)\left(β{e}^{β{i}\pi\left({a}+{b}\right)} +\mathrm{1}\right) \\ $$$$=\mathrm{2}^{{b}β\mathrm{1}} {i}^{{b}β\mathrm{1}} ._{\mathrm{2}} {F}_{\mathrm{1}} \left({b},\frac{{b}β{a}}{\mathrm{2}};\frac{{b}β{a}+\mathrm{2}}{\mathrm{2}};\mathrm{1}\right).\frac{\mathrm{1}β{e}^{{i}\pi\left({a}β{b}\right)} }{{b}β{a}} \\ $$$$+\mathrm{2}^{{b}β\mathrm{1}} {i}^{{b}β\mathrm{1}} ._{\mathrm{2}} {F}_{\mathrm{1}} \left({b},\frac{{a}+{b}}{\mathrm{2}};\frac{{a}+{b}+\mathrm{2}}{\mathrm{2}};\mathrm{1}\right).\frac{\mathrm{1}β{e}^{β{i}\pi\left({a}+{b}\right)} }{{a}+{b}} \\ $$$$\:_{\mathrm{2}} {F}_{\mathrm{1}} \left({a},{b};{c},\mathrm{1}\right)=\frac{\Gamma\left({c}\right)\Gamma\left({c}β{a}β{b}\right)}{\Gamma\left({c}β{a}\right)\Gamma\left({c}β{b}\right)} \\ $$$${wr}\:{get}\:\mathrm{2}^{{b}β\mathrm{1}} {i}^{{b}β\mathrm{1}} \left(\frac{\Gamma\left(\frac{{b}β{a}+\mathrm{2}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}β{b}\right)}{\Gamma\left(\mathrm{1}β\frac{{a}}{\mathrm{2}}β\frac{{b}}{\mathrm{2}}\right)}\right)\frac{\mathrm{1}β{e}^{{i}\pi\left({a}β{b}\right)} }{{b}β{a}} \\ $$$$+\mathrm{2}^{{b}β\mathrm{1}} {i}^{{b}β\mathrm{1}} \left(\frac{\Gamma\left(\frac{{a}+{b}+\mathrm{2}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}β{b}\right)}{\Gamma\left(\mathrm{1}+\frac{{a}β{b}}{\mathrm{2}}\right)}\right).\frac{\mathrm{1}β\boldsymbol{{e}}^{β\boldsymbol{{i}\pi}\left({a}+{b}\right)} }{{a}+{b}} \\ $$$$=\mathrm{2}^{{b}β\mathrm{1}} {i}^{{b}β\mathrm{1}} .\frac{\Gamma\left(\mathrm{1}β{b}\right)\Gamma\left(\frac{{a}+{b}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{1}+\frac{{a}β{b}}{\mathrm{2}}\right)}.\frac{\mathrm{1}β{e}^{β\boldsymbol{{i}\pi}\left({a}+{b}\right)} }{\mathrm{2}}+\frac{\Gamma\left(\mathrm{1}β{b}\right)\Gamma\left(\frac{{b}β{a}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{1}β\frac{{a}+{b}}{\mathrm{2}}\right)}.\frac{\mathrm{1}β{e}^{{i}\pi\left({a}β{b}\right)} }{\mathrm{2}} \\ $$$$=\mathrm{2}^{{b}β\mathrm{1}} .{i}^{{b}β\mathrm{1}} \left(\frac{\Gamma\left(\mathrm{1}β{b}\right)}{\Gamma\left(\mathrm{1}+\frac{{a}β{b}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}β\frac{{a}+{b}}{\mathrm{2}}\right)}.{i}\pi{e}^{β{i}\frac{\pi}{\mathrm{2}}\left({a}+{b}\right)} \right) \\ $$$$+\mathrm{2}^{{b}β\mathrm{1}} {i}^{{b}β\mathrm{1}} \left(\frac{\Gamma\left(\mathrm{1}β{b}\right)}{\Gamma\left(\mathrm{1}+\frac{{a}β{b}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}β\frac{{a}+{b}}{\mathrm{2}}\right)}.{i}\pi{e}^{{i}\frac{\pi}{\mathrm{2}}\left(\frac{{a}β{b}}{\mathrm{2}}\right)} \right) \\ $$$$=\mathrm{2}^{{b}β\mathrm{1}} .\frac{\Gamma\left(\mathrm{1}β{b}\right).\mathrm{2}\pi{cos}\left(\frac{\pi{a}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{1}+\frac{{a}β{b}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}β\frac{{a}+{b}}{\mathrm{2}}\right)}=\pi\frac{\mathrm{2}^{{b}} {cos}\left(\frac{\pi{a}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}β{b}\right)}{\Gamma\left(\mathrm{1}+\frac{{a}β{b}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}β\frac{{a}+{b}}{\mathrm{2}}\right)} \\ $$$$\phi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {x}\sqrt{{tg}\left({x}\right)}{dx}=\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} \frac{{xsin}\left({x}\right)}{\:\sqrt{{sin}\left(\mathrm{2}{x}\right)}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ysin}\left(\frac{{y}}{\mathrm{2}}\right)}{\:\sqrt{{sin}\left({y}\right)}} \\ $$$$ \\ $$$${f}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\pi} \frac{{cos}\left({ax}\right)}{{sin}^{{b}} \left({x}\right)}{dx},\partial^{{a}} {f}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\pi} \frac{β{xsin}\left({ax}\right)}{{sin}^{{b}} \left({x}\right)}{dx} \\ $$$$\left({a},{b}\right)=\left(\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{2}}\right)\:{we}\:{get}\:\phi=β\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\frac{\partial{f}}{\partial{a}}\left(\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\pi}{\mathrm{4}{sin}\left(\frac{\pi}{\mathrm{4}}\right)}\left(\Psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)β\Psi\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\right) \\ $$$$=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}\left(β\mathrm{2}{ln}\left(\mathrm{2}\right)β\boldsymbol{\gamma}+\frac{\pi}{\mathrm{2}}+\mathrm{3}{ln}\left(\mathrm{2}\right)+\gamma\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{4}\sqrt{\mathrm{2}}}+\frac{\pi{ln}\left(\mathrm{2}\right)}{\mathrm{2}\sqrt{\mathrm{2}}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {x}\sqrt{{tan}\left({x}\right)}{dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 24/Mar/21
$${thank}\:{you}\:{so}\:{much}\:.. \\ $$