Advanced-calculus-0-x-2-e-x-1-e-x-3-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 138521 by mnjuly1970 last updated on 14/Apr/21 …….Advanced………calculus……..Ω=∫0∞x2ex(1+ex)3dx=?…..∗∗∗∗∗∗∗∗….. Answered by Dwaipayan Shikari last updated on 14/Apr/21 11+ex=∑∞n=1(−1)n+1e−nxex(1+ex)2=∑∞n=0(−1)n+1ne−nxex(1+ex)3=12∑∞n=0(−1)n+1n(n+1)e−(n+1)x1∫0∞x2ex(1+ex)3dx=12∑∞n=0(−1)n+1∫0∞n(n+1)e−(n+1)xx2dx=∑∞n=0(−1)n+1n(n+1)2=π212−log(2) Answered by mathmax by abdo last updated on 14/Apr/21 Φ=∫0∞x2ex(1+ex)3dx⇒Φ=ex=t∫1∞ln2t.t(1+t)3dtt=∫1∞ln2t(1+t)3=t=1u−∫01ln2u(1+1u)3(−duu2)=∫01ln2uu2(1+u)3.u3du=∫01uln2u(1+u)3du=∫01(1+u−1)ln2u(1+u)3du=∫01ln2u(1+u)2du−∫01ln2u(1+u)3dubyparts∫01ln2u(1+u)2du=[(1−11+u)ln2u]01−∫01(1−11+u)2lnuudu=−2∫01lnu1+udu=−2∫01lnu∑n=0∞(−1)nundu=−2∑n=0∞(−1)n∫01unlnuduUn=∫01unlnudu=[un+1n+1lnu]01−∫01unn+1du=−1(n+1)2⇒∫01log2u(1+u)2du=2∑n=0∞(−1)n(n+1)2=−2∑n=1∞(−1)nn2=−2(21−2−1)ξ(2)=−2(−12).π26=π26∫01log2x(1+x)3dx=∫01(1+x)−3log2xdxbypartsf′=(1+x)−3andg=log2x⇒f=1−2(1+x)−2⇒∫01log2x(1+x)3dx={(12−12(1+x)2)log2x]01−∫01(12−12(1+x)2)2logxxdx=−∫01(1−1(1+x)2)logxxdx=−∫01(1+2x+x2−1(1+x)2)logxxdx=−∫01(x+2)logx(1+x)2dx….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-e-x-2-cosx-x-2-x-1-2-dx-Next Next post: calculate-f-x-0-e-xt-2-4-t-2-dt-with-x-gt-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.