Menu Close

advanced-calculus-0-x-b-1-1-x-a-s-dx-b-a-s-b-a-a-s-




Question Number 131104 by mnjuly1970 last updated on 01/Feb/21
           ...advanced  calculus...         ∫_0 ^( ∞) (x^(b−1) /((1+x^a )^s ))dx=^(???) ((Γ((b/a))Γ(s−(b/a)))/(aΓ(s)))
advancedcalculus0xb1(1+xa)sdx=???Γ(ba)Γ(sba)aΓ(s)
Answered by Ar Brandon last updated on 01/Feb/21
Ω=∫_0 ^∞ (x^(b−1) /((1+x^a )^s ))dx , x^a =t ⇒ax^(a−1) dx=dt      =(1/a)∫_0 ^∞ (x^(b−a) /((1+t)^s ))dt=(1/a)∫_0 ^∞ (t^((b−a)/a) /((1+t)^s ))dt      =(1/a)β((b/a), ((as−b)/a))=((Γ((b/a))Γ(((as−b)/a)))/(aΓ(s)))      =((Γ((b/a))Γ(s−(b/a)))/(aΓ(s)))
Ω=0xb1(1+xa)sdx,xa=taxa1dx=dt=1a0xba(1+t)sdt=1a0tbaa(1+t)sdt=1aβ(ba,asba)=Γ(ba)Γ(asba)aΓ(s)=Γ(ba)Γ(sba)aΓ(s)
Commented by mnjuly1970 last updated on 01/Feb/21
thank you mr brandon..
thankyoumrbrandon..
Commented by Ar Brandon last updated on 01/Feb/21
With pleasure Sir��