Question Number 131104 by mnjuly1970 last updated on 01/Feb/21
$$\:\:\:\:\:\:\:\:\:\:\:…{advanced}\:\:{calculus}… \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{{b}−\mathrm{1}} }{\left(\mathrm{1}+{x}^{{a}} \right)^{{s}} }{dx}\overset{???} {=}\frac{\Gamma\left(\frac{{b}}{{a}}\right)\Gamma\left({s}−\frac{{b}}{{a}}\right)}{{a}\Gamma\left({s}\right)} \\ $$
Answered by Ar Brandon last updated on 01/Feb/21
$$\Omega=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}^{\mathrm{b}−\mathrm{1}} }{\left(\mathrm{1}+\mathrm{x}^{\mathrm{a}} \right)^{\mathrm{s}} }\mathrm{dx}\:,\:\mathrm{x}^{\mathrm{a}} =\mathrm{t}\:\Rightarrow\mathrm{ax}^{\mathrm{a}−\mathrm{1}} \mathrm{dx}=\mathrm{dt} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{a}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}^{\mathrm{b}−\mathrm{a}} }{\left(\mathrm{1}+\mathrm{t}\right)^{\mathrm{s}} }\mathrm{dt}=\frac{\mathrm{1}}{\mathrm{a}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{t}^{\frac{\mathrm{b}−\mathrm{a}}{\mathrm{a}}} }{\left(\mathrm{1}+\mathrm{t}\right)^{\mathrm{s}} }\mathrm{dt} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{a}}\beta\left(\frac{\mathrm{b}}{\mathrm{a}},\:\frac{\mathrm{as}−\mathrm{b}}{\mathrm{a}}\right)=\frac{\Gamma\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\Gamma\left(\frac{\mathrm{as}−\mathrm{b}}{\mathrm{a}}\right)}{\mathrm{a}\Gamma\left(\mathrm{s}\right)} \\ $$$$\:\:\:\:=\frac{\Gamma\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\Gamma\left(\mathrm{s}−\frac{\mathrm{b}}{\mathrm{a}}\right)}{\mathrm{a}\Gamma\left(\mathrm{s}\right)} \\ $$
Commented by mnjuly1970 last updated on 01/Feb/21
$${thank}\:{you}\:{mr}\:{brandon}.. \\ $$
Commented by Ar Brandon last updated on 01/Feb/21
With pleasure Sir