Menu Close

advanced-calculus-evaluate-0-x-2-e-x-2-ln-x-




Question Number 137048 by mnjuly1970 last updated on 29/Mar/21
           ........advanced  ... ... ... calculus.......      evaluate::::        𝛘=∫_0 ^( ∞) x^2  e^(−x^2 ) ln(x)=???
..advancedcalculus.evaluate::::\boldsymbolχ=0x2ex2ln(x)=???
Answered by Ar Brandon last updated on 29/Mar/21
𝛘=∫_0 ^∞ x^2 e^(−x^2 ) lnxdx=(∂/∂t)∣_(t=0) ∫_0 ^∞ x^(2+t) e^(−x^2 ) dx  =^((u=x^2 )) (∂/∂t)∣_(t=0) (1/2)∫_0 ^∞ u^((1/2)+(t/2)) e^(−u) du=(∂/∂t)∣_(t=0) (1/2)Γ((3/2)+(t/2))     =(1/2)∣_(t=0) (1/2)Γ((3/2)+(t/2))ψ((3/2)+(t/2))     =(1/4)Γ((3/2))ψ((3/2))=(1/4)∙((√π)/2)∙(2−γ−2ln2)
\boldsymbolχ=0x2ex2lnxdx=tt=00x2+tex2dx=(u=x2)tt=0120u12+t2eudu=tt=012Γ(32+t2)=12t=012Γ(32+t2)ψ(32+t2)=14Γ(32)ψ(32)=14π2(2γ2ln2)
Commented by mnjuly1970 last updated on 29/Mar/21
 very very nice    mr brandon ..thank you...
veryverynicemrbrandon..thankyou
Commented by Ar Brandon last updated on 29/Mar/21
My pleasure, Sir
Answered by Dwaipayan Shikari last updated on 29/Mar/21
∫_0 ^∞ x^2 e^(−x^2 ) log(x)dx=ℵ′(3)  ℵ(α)=∫_0 ^∞ x^(α−1) e^(−x^2 ) dx⇒ℵ(α)=(1/2)∫_0 ^∞ j^((α/2)−1) e^(−j) dj  ℵ(α)=((Γ((α/2)))/2)⇒ℵ′(α)=((Γ′((α/2)))/4)⇒ℵ′(3)=((√π)/8)(−γ+2−2log(2))
0x2ex2log(x)dx=(3)(α)=0xα1ex2dx(α)=120jα21ejdj(α)=Γ(α2)2(α)=Γ(α2)4(3)=π8(γ+22log(2))
Commented by mnjuly1970 last updated on 29/Mar/21
thanks alot mr payan...
thanksalotmrpayan
Commented by Dwaipayan Shikari last updated on 29/Mar/21
Have a great day sir!
Answered by mathmax by abdo last updated on 30/Mar/21
Φ=∫_0 ^∞  x^2  e^(−x^2 ) lnx dx  let f(a) =∫_0 ^∞  x^a  e^(−x^2 ) dx  v(o)  x^a  e^(−x^2 ) ∼x^a     ∫_0 ^ξ   (dx/x^(−a) ) cv ⇔−a<1 ⇒a>−1  we have f(a)=∫_0 ^∞  e^(alogx)  e^(−x^2 ) dx ⇒f^′ (a)=∫_0 ^∞ x^a  e^(−x^2 ) logx dx  and f^′ (2)=∫_0 ^∞  x^2  e^(−x^2 ) logx dx  changement x^2 =t givef(a)=∫_0 ^∞  t^(a/2)  e^(−t)   (dt/(2(√t)))  =(1/2)∫_0 ^∞  t^((a−1)/2)  e^(−t)  dt =(1/2)∫_0 ^∞  t^(((a−1)/2)+1−1)  e^(−t) dt  =(1/2)∫_0 ^∞  t^(((a+1)/2)−1)  e^(−t)  dt =(1/2)Γ(((a+1)/2)) ⇒f^′ (a)=(1/4)Γ^′ (((a+1)/2)) ⇒  f^′ (2) =(1/4)Γ^′ ((3/2)) =Φ
Φ=0x2ex2lnxdxletf(a)=0xaex2dxv(o)xaex2xa0ξdxxacva<1a>1wehavef(a)=0ealogxex2dxf(a)=0xaex2logxdxandf(2)=0x2ex2logxdxchangementx2=tgivef(a)=0ta2etdt2t=120ta12etdt=120ta12+11etdt=120ta+121etdt=12Γ(a+12)f(a)=14Γ(a+12)f(2)=14Γ(32)=Φ

Leave a Reply

Your email address will not be published. Required fields are marked *