Menu Close

advanced-calculus-evaluate-Im-0-pi-2-li-2-sin-x-li-2-csc-x-dx-




Question Number 136060 by mnjuly1970 last updated on 18/Mar/21
             ...advanced   calculus....      evaluate::      𝛗=Im(∫_0 ^( (Ο€/2)) li_2 (sin(x))+li_2 (csc(x))dx)
…advancedcalculus….evaluate::Ο•=Im(∫0Ο€2li2(sin(x))+li2(csc(x))dx)
Answered by mindispower last updated on 18/Mar/21
csc(x)=(1/(sin(x)))  we have  li_2 (z)+li_2 ((1/z))=βˆ’(Ο€^2 /6)βˆ’((ln^2 (βˆ’z))/2)  ⇔φ=Im∫_0 ^(Ο€/2) (βˆ’(𝛑^2 /6)βˆ’((ln^2 (βˆ’sin(x)))/2))dx  =βˆ’((Im)/2)∫_0 ^(Ο€/2) (ln(sin(x))+iΟ€)^2 dx  =βˆ’((Im)/2)∫_0 ^(Ο€/2) (2iΟ€ln(sin(x)))dx  =βˆ’Ο€βˆ«_0 ^(Ο€/2) ln(sin(x))dx=((Ο€^2 log(2))/2)
csc(x)=1sin(x)wehaveli2(z)+li2(1z)=βˆ’Ο€26βˆ’ln2(βˆ’z)2⇔ϕ=Im∫0Ο€2(βˆ’Ο€26βˆ’ln2(βˆ’sin(x))2)dx=βˆ’Im2∫0Ο€2(ln(sin(x))+iΟ€)2dx=βˆ’Im2∫0Ο€2(2iΟ€ln(sin(x)))dx=βˆ’Ο€βˆ«0Ο€2ln(sin(x))dx=Ο€2log(2)2
Commented by mnjuly1970 last updated on 18/Mar/21
thanks alot sir power...
thanksalotsirpower…
Commented by mindispower last updated on 19/Mar/21
pleasur sir
pleasursir

Leave a Reply

Your email address will not be published. Required fields are marked *