Menu Close

advanced-calculus-evaluation-0-ln-1-x-x-1-x-2-dx-solution-0-1-ln-1-x-x-1-x-2-dx-1-1-ln-1-x-x-1-x




Question Number 132324 by mnjuly1970 last updated on 13/Feb/21
            ....advanced   calculus...     evaluation :        𝛗=∫_(0^(  ) ) ^( ∞) ((ln(1+x))/(x(1+x^2 ))) dx      solution:    𝛗=[∫_0 ^( 1) ((ln(1+x))/(x(1+x^2 )))dx=𝛗_1 ]+[∫_1 ^( ∞) ((ln(1+x))/(x(1+x^2 ))) dx=𝛗_2 ]     𝛗_2 =^(x=(1/t)) ∫_0 ^( 1) ((ln(1+(1/t)))/((1/t)(1+(1/t^2 ))))(dt/t^2 )=∫_0 ^( 1) ((tln(1+(1/t)))/(1+t^2 ))dt  =∫_0 ^( 1) ((tln(1+t))/(1+t^2 ))dtβˆ’βˆ«_0 ^( 1) ((tln(t))/(1+t^2 ))dt  ∴  𝛗=𝛗_1 +𝛗_2 =∫_0 ^( 1) ((1/x)+x)((ln(1+x))/(1+x^2 ))dxβˆ’Ξ¦  𝛗=∫_0 ^( 1) ((ln(1+x))/x)dxβˆ’Ξ¦=βˆ’li_2 (βˆ’1)βˆ’Ξ¦   Ξ¦=∫_0 ^( 1) ((xln(x))/(1+x^2 ))dx=Ξ£_(n=0) ^∞ ∫_0 ^( 1) (βˆ’1)^n x^(2n+1) ln(x)dx    =Ξ£_(n=0) ^∞ (βˆ’1)^n {[(x^(2n+2) /(2n+2)) ln(x)]_0 ^1 βˆ’(1/(2n+2))∫_0 ^( 1) x^(2n+1) dx}  =Ξ£_(n=0) ^∞ (βˆ’1)^(n+1) (1/(4(n+1)^2 ))=βˆ’(1/4) Ξ£_(n=1) ^∞ (((βˆ’1)^(nβˆ’1) )/n^2 )  =((βˆ’1)/4) Ξ·(2)=((βˆ’Ο€^2 )/(48))   ....      ∴ 𝛗=βˆ’li_2 (βˆ’1)βˆ’Ξ¦=(Ο€^2 /(12))+(Ο€^2 /(48))                  𝛗=((5Ο€^2 )/(48))
….advancedcalculus…evaluation:Ο•=∫0∞ln(1+x)x(1+x2)dxsolution:Ο•=[∫01ln(1+x)x(1+x2)dx=Ο•1]+[∫1∞ln(1+x)x(1+x2)dx=Ο•2]Ο•2=x=1t∫01ln(1+1t)1t(1+1t2)dtt2=∫01tln(1+1t)1+t2dt=∫01tln(1+t)1+t2dtβˆ’βˆ«01tln(t)1+t2dtβˆ΄Ο•=Ο•1+Ο•2=∫01(1x+x)ln(1+x)1+x2dxβˆ’Ξ¦Ο•=∫01ln(1+x)xdxβˆ’Ξ¦=βˆ’li2(βˆ’1)βˆ’Ξ¦Ξ¦=∫01xln(x)1+x2dx=βˆ‘βˆžn=0∫01(βˆ’1)nx2n+1ln(x)dx=βˆ‘βˆžn=0(βˆ’1)n{[x2n+22n+2ln(x)]01βˆ’12n+2∫01x2n+1dx}=βˆ‘βˆžn=0(βˆ’1)n+114(n+1)2=βˆ’14βˆ‘βˆžn=1(βˆ’1)nβˆ’1n2=βˆ’14Ξ·(2)=βˆ’Ο€248….βˆ΄Ο•=βˆ’li2(βˆ’1)βˆ’Ξ¦=Ο€212+Ο€248Ο•=5Ο€248
Answered by Dwaipayan Shikari last updated on 13/Feb/21
I(a)=∫_0 ^1 (t^a /(1+t^2 ))dt=Ξ£_(n=1) ^∞ (βˆ’1)^(n+1) ∫_0 ^1 t^(2n+a) dt  =Ξ£_(n=1) ^∞ (((βˆ’1)^(n+1) )/((2n+a+1)))         β‡’Iβ€²(a)=∫_0 ^1 ((t^a log(t))/(1+t^2 ))dt=Ξ£_(n=1) ^∞ (((βˆ’1)^n )/((2n+a+1)^2 ))  a=1     Iβ€²(a)=βˆ’(1/4).(Ο€^2 /(12))=βˆ’(Ο€^2 /(48))
I(a)=∫01ta1+t2dt=βˆ‘βˆžn=1(βˆ’1)n+1∫01t2n+adt=βˆ‘βˆžn=1(βˆ’1)n+1(2n+a+1)β‡’Iβ€²(a)=∫01talog(t)1+t2dt=βˆ‘βˆžn=1(βˆ’1)n(2n+a+1)2a=1Iβ€²(a)=βˆ’14.Ο€212=βˆ’Ο€248
Commented by Dwaipayan Shikari last updated on 13/Feb/21
∫_0 ^1 ((t^7 log(t))/(1+t^2 ))dt=βˆ’Ξ£_(n=1) ^∞ (((βˆ’1)^(n+1) )/((2n+8)^2 ))  =βˆ’((Ο€^2 /(12))βˆ’(1βˆ’(1/4)+(1/9)βˆ’(1/(16))))=((115)/(144))βˆ’(Ο€^2 /(12))...
∫01t7log(t)1+t2dt=βˆ’βˆ‘βˆžn=1(βˆ’1)n+1(2n+8)2=βˆ’(Ο€212βˆ’(1βˆ’14+19βˆ’116))=115144βˆ’Ο€212…
Commented by mnjuly1970 last updated on 13/Feb/21
grateful...
grateful…

Leave a Reply

Your email address will not be published. Required fields are marked *