advanced-calculus-evaluation-0-ln-1-x-x-1-x-2-dx-solution-0-1-ln-1-x-x-1-x-2-dx-1-1-ln-1-x-x-1-x Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 132324 by mnjuly1970 last updated on 13/Feb/21 β¦.advancedcalculusβ¦evaluation:Ο=β«0βln(1+x)x(1+x2)dxsolution:Ο=[β«01ln(1+x)x(1+x2)dx=Ο1]+[β«1βln(1+x)x(1+x2)dx=Ο2]Ο2=x=1tβ«01ln(1+1t)1t(1+1t2)dtt2=β«01tln(1+1t)1+t2dt=β«01tln(1+t)1+t2dtββ«01tln(t)1+t2dtβ΄Ο=Ο1+Ο2=β«01(1x+x)ln(1+x)1+x2dxβΞ¦Ο=β«01ln(1+x)xdxβΞ¦=βli2(β1)βΦΦ=β«01xln(x)1+x2dx=ββn=0β«01(β1)nx2n+1ln(x)dx=ββn=0(β1)n{[x2n+22n+2ln(x)]01β12n+2β«01x2n+1dx}=ββn=0(β1)n+114(n+1)2=β14ββn=1(β1)nβ1n2=β14Ξ·(2)=βΟ248β¦.β΄Ο=βli2(β1)βΞ¦=Ο212+Ο248Ο=5Ο248 Answered by Dwaipayan Shikari last updated on 13/Feb/21 I(a)=β«01ta1+t2dt=ββn=1(β1)n+1β«01t2n+adt=ββn=1(β1)n+1(2n+a+1)βIβ²(a)=β«01talog(t)1+t2dt=ββn=1(β1)n(2n+a+1)2a=1Iβ²(a)=β14.Ο212=βΟ248 Commented by Dwaipayan Shikari last updated on 13/Feb/21 β«01t7log(t)1+t2dt=βββn=1(β1)n+1(2n+8)2=β(Ο212β(1β14+19β116))=115144βΟ212β¦ Commented by mnjuly1970 last updated on 13/Feb/21 gratefulβ¦ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-cos-2arctanx-1-calculate-f-n-0-2-developp-f-at-integr-serie-Next Next post: find-0-x-sh-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.