Question Number 140588 by mnjuly1970 last updated on 09/May/21
$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…….{Advanced}\:….\bigstar\bigstar\bigstar….{Calculus}……. \\ $$$$\:\:\:\:\:\:\:\:{evaluation}\:{the}\:{value}\:{of}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\::=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \left({x}\right).{ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:{solution}:: \\ $$$$\:\:\:\:\:\:\:\xi\:\left({a}\right):=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}+{a}} \left({x}\right){dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\beta\:\left(\frac{\mathrm{3}+{a}}{\mathrm{2}}\:,\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\Gamma\left(\frac{\mathrm{3}+{a}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{2}+\frac{{a}}{\mathrm{2}}\right)}\right)…….\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\:\xi\:'\:\left(\mathrm{0}\right)\:…………..\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{2}}\:\sqrt{\pi}\:\frac{\:\Gamma'\left(\frac{\mathrm{3}+{a}}{\mathrm{2}}\right).\Gamma\left(\mathrm{2}+\frac{{a}}{\mathrm{2}}\right)β\Gamma\left(\frac{\mathrm{3}+{a}}{\mathrm{2}}\right).\Gamma'\left(\mathrm{2}+\frac{{a}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left(\mathrm{2}+\frac{{a}}{\mathrm{2}}\right)}\:\mid_{{a}=\mathrm{0}} \\ $$$$\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\pi}\:\:\frac{\Gamma'\left(\frac{\mathrm{3}}{\mathrm{2}}\right)β\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right).\Gamma'\left(\mathrm{2}\right)}{\left(\:\Gamma^{\mathrm{2}} \left(\mathrm{2}\right):=\mathrm{1}\:\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\::=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\pi}\:\frac{\psi\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)β\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right).\psi\left(\mathrm{2}\right)}{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\::=\:\frac{\sqrt{\pi}}{\mathrm{4}}\left\{\:\left(\mathrm{2}β\gammaβ\mathrm{2}{ln}\left(\mathrm{2}\right)β\left(\mathrm{1}β\gamma\right)\right\}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\::=\frac{\sqrt{\pi}}{\mathrm{4}}\left(\mathrm{1}β{ln}\left(\mathrm{4}\right)\right)=\sqrt{\pi}\:{ln}\left(\sqrt[{\mathrm{4}}]{\frac{{e}}{\mathrm{4}}}\right) \\ $$
Answered by mathmax by abdo last updated on 10/May/21
$$\Phi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\mathrm{log}\left(\mathrm{sinx}\right)\mathrm{dx}\:\mathrm{let}\:\mathrm{f}\left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{a}} \mathrm{x}\:\mathrm{dx}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{e}^{\mathrm{alog}\left(\mathrm{sinx}\right)} \:\mathrm{dx}\:\Rightarrow\mathrm{f}^{'} \left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{log}\left(\mathrm{sinx}\right)\:\mathrm{sin}^{\mathrm{a}} \mathrm{x}\:\mathrm{dx}\:\Rightarrow \\ $$$$\mathrm{f}^{'} \left(\mathrm{2}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\mathrm{log}\left(\mathrm{sinx}\right)\mathrm{dx}\:=\Phi \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{f}\left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\mathrm{sin}^{\mathrm{2}\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}\right)β\mathrm{1}} \:\mathrm{cos}^{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)β\mathrm{1}} \mathrm{x}\:\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{B}\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\Gamma\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}\right).\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}\:}+\frac{\mathrm{1}}{\mathrm{2}}\right)}=\frac{\sqrt{\pi}}{\mathrm{2}}.\frac{\Gamma\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{a}}{\mathrm{2}}+\mathrm{1}\right)} \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{2}}Γ\frac{\Gamma\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}\right)}{\frac{\mathrm{a}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{a}}{\mathrm{2}}\right)}\:=\frac{\sqrt{\pi}}{\mathrm{a}}\:Γ\frac{\Gamma\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{a}}{\mathrm{2}}\right)}\:\Rightarrow \\ $$$$\mathrm{f}^{'} \left(\mathrm{a}\right)\:=β\frac{\sqrt{\pi}}{\mathrm{a}^{\mathrm{2}} }Γ\frac{\Gamma\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{a}}{\mathrm{2}}\right)}+\frac{\sqrt{\pi}}{\mathrm{a}}Γ\frac{\frac{\mathrm{1}}{\mathrm{2}}\Gamma^{'} \left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}\right).\Gamma\left(\frac{\mathrm{a}}{\mathrm{2}}\right)β\frac{\mathrm{1}}{\mathrm{2}}\Gamma^{'} \left(\frac{\mathrm{a}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{a}+\mathrm{1}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{a}}{\mathrm{2}}\right)} \\ $$$$\Rightarrow\:\Phi=\mathrm{f}^{'} \left(\mathrm{2}\right)=β\frac{\sqrt{\pi}}{\mathrm{4}}Γ\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\mathrm{1}}\:+\frac{\sqrt{\pi}}{\mathrm{4}}Γ\frac{\Gamma^{'} \left(\frac{\mathrm{3}}{\mathrm{2}}\right).\mathrm{1}β\Gamma^{'} \left(\mathrm{1}\right).\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\mathrm{1}^{\mathrm{2}} } \\ $$$$=β\frac{\sqrt{\pi}}{\mathrm{4}}.\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\:+\frac{\sqrt{\pi}}{\mathrm{4}}Γ\left(\Gamma^{'} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)+\gamma\:.\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\right) \\ $$$$\Gamma^{'} \left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{β\mathrm{t}} \:\mathrm{logt}\:\mathrm{dt}\:=β\gamma \\ $$