Advanced-Calculus-evaluation-the-value-of-0-pi-2-sin-2-x-ln-sin-x-dx-solution-a-0 Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 140588 by mnjuly1970 last updated on 09/May/21 …….Advanced….★★★….Calculus…….evaluationthevalueof:ϕ:=∫0π2sin2(x).ln(sin(x))dxsolution::ξ(a):=∫0π2sin2+a(x)dx=12β(3+a2,12):=12(Γ(3+a2)Γ(12)Γ(2+a2))…….✓ϕ:=ξ′(0)…………..✓:=12πΓ′(3+a2).Γ(2+a2)−Γ(3+a2).Γ′(2+a2)Γ2(2+a2)∣a=0:=12πΓ′(32)−Γ(32).Γ′(2)(Γ2(2):=1):=12πψ(32)Γ(32)−Γ(32).ψ(2)1:=π4{(2−γ−2ln(2)−(1−γ)}:=π4(1−ln(4))=πln(e44) Answered by mathmax by abdo last updated on 10/May/21 Φ=∫0π2sin2xlog(sinx)dxletf(a)=∫0π2sinaxdx⇒f(a)=∫0π2ealog(sinx)dx⇒f′(a)=∫0π2log(sinx)sinaxdx⇒f′(2)=∫0π2sin2xlog(sinx)dx=Φwehavef(a)=∫0π2sin2(a+12)−1cos2(12)−1xdx=12B(a+12,12)=12.Γ(a+12).Γ(12)Γ(a+12+12)=π2.Γ(a+12)Γ(a2+1)=π2×Γ(a+12)a2Γ(a2)=πa×Γ(a+12)Γ(a2)⇒f′(a)=−πa2×Γ(a+12)Γ(a2)+πa×12Γ′(a+12).Γ(a2)−12Γ′(a2)Γ(a+12)Γ2(a2)⇒Φ=f′(2)=−π4×Γ(32)1+π4×Γ′(32).1−Γ′(1).Γ(32)12=−π4.Γ(32)+π4×(Γ′(32)+γ.Γ(32))Γ′(1)=∫0∞e−tlogtdt=−γ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: cos-x-2y-a-cos-x-y-b-The-maximum-value-of-sin-2-2x-3y-is-Next Next post: x-log-2-x-4-lt-x-16- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.