Menu Close

Advanced-Calculus-evaluation-the-value-of-0-pi-2-sin-2-x-ln-sin-x-dx-solution-a-0




Question Number 140588 by mnjuly1970 last updated on 09/May/21
                          .......Advanced ....★★★....Calculus.......          evaluation the value of :                    𝛗 :=∫_0 ^( (π/2)) sin^2 (x).ln(sin(x))dx            solution::         ξ (a):=∫_0 ^( (π/2)) sin^(2+a) (x)dx =(1/2)β (((3+a)/2) ,(1/2))              :=(1/2)(((Γ(((3+a)/2))Γ((1/2)))/(Γ(2+(a/2))))).......✓             𝛗:= ξ ′ (0) ..............✓             :=(1/2) (√π) (( Γ′(((3+a)/2)).Γ(2+(a/2))−Γ(((3+a)/2)).Γ′(2+(a/2)))/(Γ^2 (2+(a/2)))) ∣_(a=0)             :=(1/2)(√π)  ((Γ′((3/2))−Γ((3/2)).Γ′(2))/(( Γ^2 (2):=1 )))            :=(1/2)(√π) ((ψ((3/2))Γ((3/2))−Γ((3/2)).ψ(2))/1)            := ((√π)/4){ (2−γ−2ln(2)−(1−γ)}            :=((√π)/4)(1−ln(4))=(√π) ln(((e/4))^(1/4) )
.Advanced..Calculus.evaluationthevalueof:ϕ:=0π2sin2(x).ln(sin(x))dxsolution::ξ(a):=0π2sin2+a(x)dx=12β(3+a2,12):=12(Γ(3+a2)Γ(12)Γ(2+a2)).ϕ:=ξ(0)..:=12πΓ(3+a2).Γ(2+a2)Γ(3+a2).Γ(2+a2)Γ2(2+a2)a=0:=12πΓ(32)Γ(32).Γ(2)(Γ2(2):=1):=12πψ(32)Γ(32)Γ(32).ψ(2)1:=π4{(2γ2ln(2)(1γ)}:=π4(1ln(4))=πln(e44)
Answered by mathmax by abdo last updated on 10/May/21
Φ=∫_0 ^(π/2)  sin^2 x log(sinx)dx let f(a)=∫_0 ^(π/2)  sin^a x dx ⇒  f(a)=∫_0 ^(π/2)  e^(alog(sinx))  dx ⇒f^′ (a)=∫_0 ^(π/2)  log(sinx) sin^a x dx ⇒  f^′ (2)=∫_0 ^(π/2)  sin^2 x log(sinx)dx =Φ  we have f(a)=∫_0 ^(π/2)   sin^(2(((a+1)/2))−1)  cos^(2((1/2))−1) x dx  =(1/2)B(((a+1)/2),(1/2)) =(1/2).((Γ(((a+1)/2)).Γ((1/2)))/(Γ(((a+1)/(2 ))+(1/2))))=((√π)/2).((Γ(((a+1)/2)))/(Γ((a/2)+1)))  =((√π)/2)×((Γ(((a+1)/2)))/((a/2)Γ((a/2)))) =((√π)/a) ×((Γ(((a+1)/2)))/(Γ((a/2)))) ⇒  f^′ (a) =−((√π)/a^2 )×((Γ(((a+1)/2)))/(Γ((a/2))))+((√π)/a)×(((1/2)Γ^′ (((a+1)/2)).Γ((a/2))−(1/2)Γ^′ ((a/2))Γ(((a+1)/2)))/(Γ^2 ((a/2))))  ⇒ Φ=f^′ (2)=−((√π)/4)×((Γ((3/2)))/1) +((√π)/4)×((Γ^′ ((3/2)).1−Γ^′ (1).Γ((3/2)))/1^2 )  =−((√π)/4).Γ((3/2)) +((√π)/4)×(Γ^′ ((3/2))+γ .Γ((3/2)))  Γ^′ (1)=∫_0 ^∞  e^(−t)  logt dt =−γ
Φ=0π2sin2xlog(sinx)dxletf(a)=0π2sinaxdxf(a)=0π2ealog(sinx)dxf(a)=0π2log(sinx)sinaxdxf(2)=0π2sin2xlog(sinx)dx=Φwehavef(a)=0π2sin2(a+12)1cos2(12)1xdx=12B(a+12,12)=12.Γ(a+12).Γ(12)Γ(a+12+12)=π2.Γ(a+12)Γ(a2+1)=π2×Γ(a+12)a2Γ(a2)=πa×Γ(a+12)Γ(a2)f(a)=πa2×Γ(a+12)Γ(a2)+πa×12Γ(a+12).Γ(a2)12Γ(a2)Γ(a+12)Γ2(a2)Φ=f(2)=π4×Γ(32)1+π4×Γ(32).1Γ(1).Γ(32)12=π4.Γ(32)+π4×(Γ(32)+γ.Γ(32))Γ(1)=0etlogtdt=γ

Leave a Reply

Your email address will not be published. Required fields are marked *