Menu Close

advanced-calculus-find-the-value-of-n-1-1-n-H-2n-n-




Question Number 138145 by mnjuly1970 last updated on 10/Apr/21
                   ...........advanced ... ... ... calculus.........        find the value of::                  Θ=Σ_(n=1) ^∞ (((−1)^n H_(2n) )/n)=???
..advancedcalculusfindthevalueof::Θ=n=1(1)nH2nn=???
Answered by Dwaipayan Shikari last updated on 10/Apr/21
Σ_(n=1) ^∞ H_(2n) x^(2n) =H_2 x^2 +H_4 x^4 +H_6 x^6 +H_8 x^8 +...=ψ(x^2 )  And Σ_(n=1) ^∞ (((−1)^n H_(2n) )/n)=∫_0 ^1 ((ψ(−x))/( (√x)))dx  Σ_(n=1) ^∞ H_n x^n =H_1 x+H_2 x^2 +H_3 x^3 +...=−((log(1−x))/(1−x))  Σ_(n=1) ^∞ (−1)^n H_n x^n =−H_1 x+H_2 x^2 −H_3 x^3 +...=−((log(1+x))/(1+x))  ψ(x^2 )=−(1/2)(((log(1−x))/(1−x))+((log(1+x))/(1+x)))  ψ(x)=−(1/2)(((log(1−(√x)))/(1−(√x)))+((log(1+(√x)))/(1+(√x))))  ∫_0 ^1 ((ψ(−x))/( (√x)))=−(1/2)∫_0 ^1 (1/( i(√x)))(((log(1−i(√x)))/(1−i(√x)))+((log(1+i(√x)))/(1+i(√x))))dx        x=t^2   =−(1/(2i))∫_0 ^1 ((log(1−it))/(1−it))+((log(1+it))/(1+it))dt  =−(1/(2i))∫_0 ^1 ((log(1+t^2 ))/(1+t^2 ))+itlog(((1−it)/(1+it)))dt  ....
n=1H2nx2n=H2x2+H4x4+H6x6+H8x8+=ψ(x2)Andn=1(1)nH2nn=01ψ(x)xdxn=1Hnxn=H1x+H2x2+H3x3+=log(1x)1xn=1(1)nHnxn=H1x+H2x2H3x3+=log(1+x)1+xψ(x2)=12(log(1x)1x+log(1+x)1+x)ψ(x)=12(log(1x)1x+log(1+x)1+x)01ψ(x)x=12011ix(log(1ix)1ix+log(1+ix)1+ix)dxx=t2=12i01log(1it)1it+log(1+it)1+itdt=12i01log(1+t2)1+t2+itlog(1it1+it)dt.
Commented by mnjuly1970 last updated on 10/Apr/21
grateful  for your attention    and  effort...
gratefulforyourattentionandeffort
Answered by Ñï= last updated on 10/Apr/21
Σ_(n=1) ^∞ (((−1)^n )/n)H_(2n) =−∫_0 ^1 (1/(1−u))Σ_(n=1) ^∞ (((−1)^(n−1) )/n)x^n (1−u^(2n) )du         x=1  =∫_0 ^1 (1/(u−1))Σ_(n=1) ^∞ (((−1)^(n−1) )/n)[x^n −(xu^2 )^n ]du  =∫_0 ^1 (1/(u−1))[ln(1+x)−ln(1+xu^2 )]du  =.....???
n=1(1)nnH2n=0111un=1(1)n1nxn(1u2n)dux=1=011u1n=1(1)n1n[xn(xu2)n]du=011u1[ln(1+x)ln(1+xu2)]du=..???
Commented by mnjuly1970 last updated on 10/Apr/21
      thanks alot mr...
thanksalotmr
Answered by mnjuly1970 last updated on 10/Apr/21
      f(x):=Σ_(n=1 ) ^∞ (H_n /n) x^n =(1/2)ln^2 (1−x)+li_2 (x)        f (i):=Σ(H_n /n)(i)^n =(1/2)ln^2 (1−i)+li_2 (i)....(∗)          f(−i):=Σ_(n=1) ^∞ (H_n /n)(−i)^n =(1/2)ln^2 (1+i)+li_2 (−i)....(∗∗)       (∗)+(∗∗) : Σ(H_n /n)(i^n +(−i)^n )=(1/2){ln^2 ((√2) e^((−iπ)/4) )+ln^2 ((√2) e^((iπ)/4) )}+(1/2)li_2 (i^2 )             ∴ Σ_(n=1) ^∞ (H_(2n) /(2n))((−1)^n +(−1)^n )=(1/2){(ln((√2) )−((iπ)/4))^2 +(ln((√(2  )) ) +((iπ)/4))^2 }−(π^2 /(24))            =(1/2){2((1/4)ln^2 (2)−(π^2 /(16)))}−(π^2 /(24))    ∴      Θ =(1/4)ln^2 (2)−((5π^2 )/(48)) ...✓✓
f(x):=n=1Hnnxn=12ln2(1x)+li2(x)f(i):=ΣHnn(i)n=12ln2(1i)+li2(i).()f(i):=n=1Hnn(i)n=12ln2(1+i)+li2(i).()()+():ΣHnn(in+(i)n)=12{ln2(2eiπ4)+ln2(2eiπ4)}+12li2(i2)n=1H2n2n((1)n+(1)n)=12{(ln(2)iπ4)2+(ln(2)+iπ4)2}π224=12{2(14ln2(2)π216)}π224Θ=14ln2(2)5π248
Answered by Kamel last updated on 10/Apr/21
Commented by Kamel last updated on 10/Apr/21
Without complex numbers.
Withoutcomplexnumbers.
Commented by mnjuly1970 last updated on 10/Apr/21
thanks alot..
thanksalot..

Leave a Reply

Your email address will not be published. Required fields are marked *