advanced-calculus-first-prove-that-1-0-1-ln-1-x-ln-1-x-x-dx-5-8-3-then-conclude-that-2-0-1-ln-2-1- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 135252 by mnjuly1970 last updated on 11/Mar/21 ….advancedcalculus….firstprovethat::ϕ1=∫01ln(1−x)ln(1+x)xdx=−58ζ(3)thenconcludethat:ϕ2=∫01ln2(1+x)xdx=ζ(3)4….m.n… Answered by mathmax by abdo last updated on 11/Mar/21 Φ1=∫01ln(1−x)xln(1+x)dxwehaveln′(1+x)=11+x=∑n=0∞(−1)nxn⇒ln(1+x)=∑n=0∞(−1)nxn+1n+1+c(c=0)=∑n=1∞(−1)n−1xnn⇒ln(1+x)x=∑n=1∞(−1)n−1xn−1n⇒Φ1=∑n=1∞(−1)n−1n∫01xn−1ln(1−x)dxAn=∫01xn−1ln(1−x)dx=[xn−1nln(1−x)]01+∫01xn−1n(1−x)dx=−1n∫01xn−1x−1dx=−1n∫01(1+x+x2+….+xn−1)dx=−1n[x+x22+….+xnn]01=−1n(1+12+….+1n)=−Hnn⇒Φ1=∑n=1∞(−1)nn2Hn=∑n=1∞(−1)nHnn2resttofindthevalueofthisserie….becontinued… Commented by mnjuly1970 last updated on 12/Mar/21 thankyousomuchΣ(−1)nHnn2=−58ζ(3) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-4176Next Next post: Question-135253 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.