Menu Close

advanced-calculus-first-prove-that-1-0-1-ln-1-x-ln-1-x-x-dx-5-8-3-then-conclude-that-2-0-1-ln-2-1-




Question Number 135252 by mnjuly1970 last updated on 11/Mar/21
         ....advanced    calculus....      first prove that::                          𝛗_1 =∫_0 ^( 1) ((ln(1−x)ln(1+x))/x)dx=((−5)/8) ζ(3)       then conclude that:             𝛗_2 =∫_0 ^( 1) ((ln^2 (1+x))/x)dx=((ζ(3))/4)         ....m.n...
.advancedcalculus.firstprovethat::ϕ1=01ln(1x)ln(1+x)xdx=58ζ(3)thenconcludethat:ϕ2=01ln2(1+x)xdx=ζ(3)4.m.n
Answered by mathmax by abdo last updated on 11/Mar/21
Φ_1 =∫_0 ^1 ((ln(1−x))/x)ln(1+x)dx  we have ln^′ (1+x)=(1/(1+x))=Σ_(n=0) ^∞ (−1)^n x^n   ⇒ln(1+x)=Σ_(n=0) ^∞ (−1)^n  (x^(n+1) /(n+1)) +c(c=0) =Σ_(n=1) ^∞ (−1)^(n−1)  (x^n /n) ⇒  ((ln(1+x))/x)=Σ_(n=1) ^∞ (−1)^(n−1)  (x^(n−1) /n) ⇒Φ_1 =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)∫_0 ^1  x^(n−1)  ln(1−x)dx  A_n =∫_0 ^1  x^(n−1) ln(1−x)dx =[((x^n −1)/n)ln(1−x)]_0 ^1 +∫_0 ^1  ((x^n −1)/(n(1−x)))dx  =−(1/n)∫_0 ^1  ((x^n −1)/(x−1))dx =−(1/n)∫_0 ^1 (1+x+x^2  +....+x^(n−1) )dx  =−(1/n)[x+(x^2 /2)+....+(x^n /n)]_0 ^1  =−(1/n)(1+(1/2)+....+(1/n))=−(H_n /n) ⇒  Φ_1 =Σ_(n=1) ^∞  (((−1)^n )/n^2 )H_n =Σ_(n=1) ^∞ (−1)^n  (H_n /n^2 )  rest to find the value of this serie....be continued...
Φ1=01ln(1x)xln(1+x)dxwehaveln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nxn+1n+1+c(c=0)=n=1(1)n1xnnln(1+x)x=n=1(1)n1xn1nΦ1=n=1(1)n1n01xn1ln(1x)dxAn=01xn1ln(1x)dx=[xn1nln(1x)]01+01xn1n(1x)dx=1n01xn1x1dx=1n01(1+x+x2+.+xn1)dx=1n[x+x22+.+xnn]01=1n(1+12+.+1n)=HnnΦ1=n=1(1)nn2Hn=n=1(1)nHnn2resttofindthevalueofthisserie.becontinued
Commented by mnjuly1970 last updated on 12/Mar/21
thank you so much      Σ(((−1)^n H_n )/n^2 )=((−5)/8) ζ(3)
thankyousomuchΣ(1)nHnn2=58ζ(3)

Leave a Reply

Your email address will not be published. Required fields are marked *