Menu Close

advanced-calculus-I-if-pi-4-pi-2-x-cos-2x-cos-x-sin-7-x-dx-api-90-then-a-




Question Number 136813 by mnjuly1970 last updated on 26/Mar/21
          ......advanced    calculus(I)....      if :     Ω=∫_(π/4) ^( (π/2)) ((x.cos(2x).cos(x))/(sin^7 (x))) dx=((aπ)/(90))     then  ::  a=???
advancedcalculus(I).if:Ω=π4π2x.cos(2x).cos(x)sin7(x)dx=aπ90then::a=???
Answered by Ar Brandon last updated on 26/Mar/21
Ω=∫_(π/4) ^(π/2) ((xcos2xcosx)/(sin^7 x))dx=∫_(π/4) ^(π/2) ((x(1−2sin^2 x)cosx)/(sin^7 x))dx      =∫_(π/4) ^(π/2) {x∙((cosx)/(sin^7 x))−x∙((2cosx)/(sin^5 x))}dx      ={[x∙(1/(−6sin^6 x))+(1/6)∫(dx/(sin^6 x))]−2[x∙(1/(−4sin^4 x))+(1/4)∫(dx/(sin^4 x))]}_(π/4) ^(π/2)       =−(π/2)∙(1/6)+(π/4)∙(8/6)+2((π/2)∙(1/4)−(π/4))+(1/6)∫_(π/4) ^(π/2) (dx/(sin^6 x))−(1/2)∫_(π/4) ^(π/2) (dx/(sin^4 x))      =(1/6)∫_(π/4) ^(π/2) (dx/(sin^6 x))−(1/2)∫_(π/4) ^(π/2) (dx/(sin^4 x))      =(1/6)∫_(π/4) ^(π/2) cosec^2 x(1+cot^2 x)^2 dx−(1/2)∫_(π/4) ^(π/2) (cosec^2 x)(cot^2 x+1)dx      =[(1/2)(((cot^3 x)/3)+cotx)−(1/6)(cotx+2((cot^3 x)/3)+((cot^5 x)/5))]_(π/4) ^(π/2) =−((16)/(45))=((aπ)/(90)) , a=−((32)/π)
Ω=π4π2xcos2xcosxsin7xdx=π4π2x(12sin2x)cosxsin7xdx=π4π2{xcosxsin7xx2cosxsin5x}dx={[x16sin6x+16dxsin6x]2[x14sin4x+14dxsin4x]}π4π2=π216+π486+2(π214π4)+16π4π2dxsin6x12π4π2dxsin4x=16π4π2dxsin6x12π4π2dxsin4x=16π4π2cosec2x(1+cot2x)2dx12π4π2(cosec2x)(cot2x+1)dx=[12(cot3x3+cotx)16(cotx+2cot3x3+cot5x5)]π4π2=1645=aπ90,a=32π
Commented by mnjuly1970 last updated on 26/Mar/21
   thanks  alot ...
thanksalot
Commented by Ar Brandon last updated on 26/Mar/21
You're welcome Sir !

Leave a Reply

Your email address will not be published. Required fields are marked *