advanced-calculus-I-pi-2-pi-2-sin-2-tan-x-dx-pi-e-sinh-1- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 138524 by mnjuly1970 last updated on 14/Apr/21 …….advanced…….…calculus…..I:=∫−π2π2sin2(tan(x))dx=???πesinh(1) Answered by Dwaipayan Shikari last updated on 14/Apr/21 ∫−∞∞sin2(t)t2+1dt=τ(1)Knowing∫−∞∞cos(αx)x2+1=πe−ατ(α)=12∫−∞∞1−cos(2αx)x2+1dx=12(π−πe−2α)=π2(e2α−1e2α)τ(1)=π2(e2−1e2)=π2(e−1ee)=πesinh(1) Answered by Ñï= last updated on 14/Apr/21 ∫−π/2π/2sin2(tanx)dx=∫−∞+∞sin2uu2+1du=∫0∞1−cos2uu2+1du=π2−∫0∞cos2uu2+1du=π2−ℜ∫0∞ei2uu2+1du=π2−ℜ{πiRes(ei2uu2+1,i)}=π2−π2e2 Answered by mathmax by abdo last updated on 15/Apr/21 I=∫−π2π2sin2(tanx)dx⇒I=tanx=t∫−∞+∞sin2(t)1+t2dt=∫−∞+∞1−cos(2t)2(t2+1)dt=12∫−∞+∞dtt2+1−12∫−∞+∞cos(2t)t2+1dt=π2−12Re(∫−∞+∞e2itt2+1dt)letw(z)=e2izz2+1(=e2iz(z−i)(z+i))∫−∞+∞w(z)dz=2iπ.Res(w,i)=2iπ.e−22i=πe2⇒I=π2−π2e2⇒I=π2(1−1e2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-7453Next Next post: The-area-of-the-equilateral-triangle-is-equal-to-16-8-3-pi-Calculate-the-area-of-the-circle-inscribed-in-the-triangle- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.