Menu Close

advanced-calculus-I-pi-2-pi-2-sin-2-tan-x-dx-pi-e-sinh-1-




Question Number 138524 by mnjuly1970 last updated on 14/Apr/21
             .......advanced ... .... ... calculus.....     I:=∫_((−π)/2) ^( (π/2)) sin^2 (tan(x))dx=^(???) (π/e)sinh(1)
.advanced.calculus..I:=π2π2sin2(tan(x))dx=???πesinh(1)
Answered by Dwaipayan Shikari last updated on 14/Apr/21
∫_(−∞) ^∞ ((sin^2 (t))/(t^2 +1))dt=τ(1)  Knowing ∫_(−∞) ^∞ ((cos(αx))/(x^2 +1))=πe^(−α)   τ(α)=(1/2)∫_(−∞) ^∞ ((1−cos(2αx))/(x^2 +1))dx  =(1/2)(π−πe^(−2α) ) =(π/2)(((e^(2α) −1)/e^(2α) ))  τ(1)=(π/2)(((e^2 −1)/e^2 ))=(π/2)(((e−(1/e))/e))  =(π/e)sinh(1)
sin2(t)t2+1dt=τ(1)Knowingcos(αx)x2+1=πeατ(α)=121cos(2αx)x2+1dx=12(ππe2α)=π2(e2α1e2α)τ(1)=π2(e21e2)=π2(e1ee)=πesinh(1)
Answered by Ñï= last updated on 14/Apr/21
∫_(−π/2) ^(π/2) sin^2 (tan x)dx=∫_(−∞) ^(+∞) ((sin^2 u)/(u^2 +1))du=∫_0 ^∞ ((1−cos 2u)/(u^2 +1))du  =(π/2)−∫_0 ^∞ ((cos 2u)/(u^2 +1))du=(π/2)−ℜ∫_0 ^∞ (e^(i2u) /(u^2 +1))du  =(π/2)−ℜ{πiRes((e^(i2u) /(u^2 +1)),i)}  =(π/2)−(π/(2e^2 ))
π/2π/2sin2(tanx)dx=+sin2uu2+1du=01cos2uu2+1du=π20cos2uu2+1du=π20ei2uu2+1du=π2{πiRes(ei2uu2+1,i)}=π2π2e2
Answered by mathmax by abdo last updated on 15/Apr/21
I=∫_(−(π/2)) ^(π/2)  sin^2 (tanx)dx ⇒I=_(tanx=t)   ∫_(−∞) ^(+∞)  ((sin^2 (t))/(1+t^2 ))dt  =∫_(−∞) ^(+∞)  ((1−cos(2t))/(2(t^2  +1)))dt =(1/2)∫_(−∞) ^(+∞)  (dt/(t^2  +1))−(1/2)∫_(−∞) ^(+∞)  ((cos(2t))/(t^2  +1))dt  =(π/2)−(1/2)Re(∫_(−∞) ^(+∞)  (e^(2it) /(t^2  +1))dt) let w(z)=(e^(2iz) /(z^2  +1)) (=(e^(2iz) /((z−i)(z+i))))  ∫_(−∞) ^(+∞) w(z)dz=2iπ.Res(w,i) =2iπ.(e^(−2) /(2i))=(π/e^2 ) ⇒  I=(π/2)−(π/(2e^2 )) ⇒I=(π/2)(1−(1/e^2 ))
I=π2π2sin2(tanx)dxI=tanx=t+sin2(t)1+t2dt=+1cos(2t)2(t2+1)dt=12+dtt2+112+cos(2t)t2+1dt=π212Re(+e2itt2+1dt)letw(z)=e2izz2+1(=e2iz(zi)(z+i))+w(z)dz=2iπ.Res(w,i)=2iπ.e22i=πe2I=π2π2e2I=π2(11e2)

Leave a Reply

Your email address will not be published. Required fields are marked *