Menu Close

Advanced-Calculus-if-n-2-1-n-n-2-n-then-prove-that-1-2-e-1-proof-method-1-




Question Number 141668 by mnjuly1970 last updated on 22/May/21
                     .......Advanced ...★ ...★ ... Calculus.......           if    Ω =Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n ) then prove               that ::     (1/2) = e^(Ω−1)         proof ::      method (1):       ψ (1+x )= −γ+Σ_(n=2) ^∞ (−1)^n ζ(n)x^(n−1)           ( Maclaurin series for ψ(x+1) )      x:=(1/2) ⇒ ψ ((3/2) )=−γ + 2Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n )  (∗ )      we know that :: ψ(1+x)=(1/x)+ψ(x)        ( ∗ )  ⇛ ψ ((3/2))=2+ψ((1/2))=−γ+2Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n )         (∗)     ⇛         2−γ−ln(4)=−γ+2Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n )                             ln((e/2))= Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n ) =Ω                                       (1/2) = e^(Ω −1)    ....✓                                    ...m.n.july.1970...
.AdvancedCalculus.ifΩ=n=2(1)nζ(n)2nthenprovethat::12=eΩ1proof::method(1):ψ(1+x)=γ+n=2(1)nζ(n)xn1(Maclaurinseriesforψ(x+1))x:=12ψ(32)=γ+2n=2(1)nζ(n)2n()weknowthat::ψ(1+x)=1x+ψ(x)()ψ(32)=2+ψ(12)=γ+2n=2(1)nζ(n)2n()2γln(4)=γ+2n=2(1)nζ(n)2nln(e2)=n=2(1)nζ(n)2n=Ω12=eΩ1.m.n.july.1970
Answered by Dwaipayan Shikari last updated on 22/May/21
ψ(z+1)=−γ+Σ_(n=2) ^∞ (−1)^n ζ(n)z^(n−1)   z^2 ψ(z+1)=−γz^2 +Σ_(n=2) ^∞ (−1)^n ζ(n)z^(n+1)   ψ((1/2))=−γ−log(4)  z=(1/2)     ⇒  ((ψ((3/2))+γ)/4)=Σ_(n=2) ^∞ (−1)^n ζ(n)(1/(2^(n+1)  ))  ⇒((log(e/2))/2)=Σ_(n=2) ^∞ (−1)^n ((ζ(n))/2^(n+1) )  e^(Ω−1) =(1/( (√2)))
ψ(z+1)=γ+n=2(1)nζ(n)zn1z2ψ(z+1)=γz2+n=2(1)nζ(n)zn+1ψ(12)=γlog(4)z=12ψ(32)+γ4=n=2(1)nζ(n)12n+1log(e/2)2=n=2(1)nζ(n)2n+1eΩ1=12
Commented by mnjuly1970 last updated on 22/May/21
thanks alot mr payan  i edited it..grateful..  please recheck my answer..
thanksalotmrpayanieditedit..grateful..pleaserecheckmyanswer..
Commented by Dwaipayan Shikari last updated on 22/May/21
Yes sir it is Correct
YessiritisCorrect

Leave a Reply

Your email address will not be published. Required fields are marked *