Menu Close

advanced-calculus-k-1-k-k-n-1-a-n-b-a-b-adapted-from-brilliant-k-0-1-




Question Number 137177 by mnjuly1970 last updated on 30/Mar/21
           ......advanced     ....     calculus....         Φ=Σ_(k=1) ^∞ ((ψ′(k))/k) =Σ_(n=1) ^∞ (a/n^b )        a , b =?? (adapted from brilliant)         ................         ψ(k)=^(??) −γ+∫_0 ^( 1) (((1−t^(k−1) )/(1−t)))dt            ∴ ψ′(k)=∫_0 ^( 1) ((−t^(k−1) ln(t))/(1−t))dt              Σ_(k=1) ^∞ ((ψ′(k))/k)=∫_0 ^( 1) ((−t^(k−1) ln(t))/((1−t)k))dt      =∫_0 ^( 1) ((ln(t))/(t(1−t)))(−(t^k /k))dt=∫_0 ^( 1) ((ln(t)ln(1−t))/(t(1−t)))dt=𝛗    𝛗=∫_0 ^( 1) ((ln(t)ln(1−t))/(t(1−t)))dt=𝛗_1 +𝛗_2   where ...         ={∫_0 ^( 1) ((ln(t).ln(1−t))/(1−t))dt=𝛗_1 }+{∫_0 ^( 1) ((ln(1−t).ln(t))/t)dt=𝛗_2 }       𝛗_1 =[−(1/2)ln(t)ln^2 (1−t)]_0 ^1 +(1/2)∫_0 ^( 1) ((ln^2 (1−t))/t)dt       ∴  𝛗_1 = (1/2)(2ζ(3))=ζ(3)=^(easy) 𝛗_2             note : ∫_0 ^( 1) ((ln^2 (1−t))/t)dt=2ζ(3) (derived earlier)          𝛗=𝛗_1 +𝛗_2 =2ζ(3)=Σ_(n=1) ^∞ (2/n^3 ) ....                         𝚽= Σ_(n=1) ^∞ (a/n^b )  ......⇒a=2  , b=3
advanced.calculus.Φ=k=1ψ(k)k=n=1anba,b=??(adaptedfrombrilliant).ψ(k)=??γ+01(1tk11t)dtψ(k)=01tk1ln(t)1tdtk=1ψ(k)k=01tk1ln(t)(1t)kdt=01ln(t)t(1t)(tkk)dt=01ln(t)ln(1t)t(1t)dt=ϕϕ=01ln(t)ln(1t)t(1t)dt=ϕ1+ϕ2where={01ln(t).ln(1t)1tdt=ϕ1}+{01ln(1t).ln(t)tdt=ϕ2}ϕ1=[12ln(t)ln2(1t)]01+1201ln2(1t)tdtϕ1=12(2ζ(3))=ζ(3)=easyϕ2note:01ln2(1t)tdt=2ζ(3)(derivedearlier)ϕ=ϕ1+ϕ2=2ζ(3)=n=12n3.Φ=n=1anba=2,b=3

Leave a Reply

Your email address will not be published. Required fields are marked *