Question Number 137177 by mnjuly1970 last updated on 30/Mar/21
$$\:\:\:\:\:\:\:\:\:\:\:……{advanced}\:\:\:\:\:….\:\:\:\:\:{calculus}…. \\ $$$$\:\:\:\:\:\:\:\Phi=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\psi'\left({k}\right)}{{k}}\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{a}}{{n}^{{b}} } \\ $$$$\:\:\:\:\:\:{a}\:,\:{b}\:=??\:\left({adapted}\:{from}\:{brilliant}\right) \\ $$$$\:\:\:\:\:\:\:……………. \\ $$$$\:\:\:\:\:\:\:\psi\left({k}\right)\overset{??} {=}−\gamma+\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\mathrm{1}−{t}^{{k}−\mathrm{1}} }{\mathrm{1}−{t}}\right){dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\therefore\:\psi'\left({k}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{−{t}^{{k}−\mathrm{1}} {ln}\left({t}\right)}{\mathrm{1}−{t}}{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\psi'\left({k}\right)}{{k}}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{−{t}^{{k}−\mathrm{1}} {ln}\left({t}\right)}{\left(\mathrm{1}−{t}\right){k}}{dt} \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({t}\right)}{{t}\left(\mathrm{1}−{t}\right)}\left(−\frac{{t}^{{k}} }{{k}}\right){dt}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({t}\right){ln}\left(\mathrm{1}−{t}\right)}{{t}\left(\mathrm{1}−{t}\right)}{dt}=\boldsymbol{\phi} \\ $$$$\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({t}\right){ln}\left(\mathrm{1}−{t}\right)}{{t}\left(\mathrm{1}−{t}\right)}{dt}=\boldsymbol{\phi}_{\mathrm{1}} +\boldsymbol{\phi}_{\mathrm{2}} \:\:{where}\:… \\ $$$$\:\:\:\:\:\:\:=\left\{\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({t}\right).{ln}\left(\mathrm{1}−{t}\right)}{\mathrm{1}−{t}}{dt}=\boldsymbol{\phi}_{\mathrm{1}} \right\}+\left\{\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{t}\right).{ln}\left({t}\right)}{{t}}{dt}=\boldsymbol{\phi}_{\mathrm{2}} \right\} \\ $$$$\:\:\:\:\:\boldsymbol{\phi}_{\mathrm{1}} =\left[−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({t}\right){ln}^{\mathrm{2}} \left(\mathrm{1}−{t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$$$\:\:\:\:\:\therefore\:\:\boldsymbol{\phi}_{\mathrm{1}} =\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}\zeta\left(\mathrm{3}\right)\right)=\zeta\left(\mathrm{3}\right)\overset{{easy}} {=}\boldsymbol{\phi}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{note}\::\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}−{t}\right)}{{t}}{dt}=\mathrm{2}\zeta\left(\mathrm{3}\right)\:\left({derived}\:{earlier}\right) \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\boldsymbol{\phi}_{\mathrm{1}} +\boldsymbol{\phi}_{\mathrm{2}} =\mathrm{2}\zeta\left(\mathrm{3}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}}{{n}^{\mathrm{3}} }\:…. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\Phi}=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{a}}{{n}^{{b}} }\:\:……\Rightarrow{a}=\mathrm{2}\:\:,\:{b}=\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$