advanced-calculus-lim-n-1-n-x-x-2-dx-n-1-solution-n-1-n-x-x-2-dx-k-1-n-1-k-k-1-x Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 139556 by mnjuly1970 last updated on 28/Apr/21 ……..advanced………calculus……..Φ=limn→∞{∫1nx[x]2dx−ψ(n+1)}=?solution:Φn=∫1nx[x]2dx=∑n−1k=1∫kk+1xk2dx=12∑n−1k=11k2(2k+1)=∑n−1k=11k+12∑n−1k=11k2Φ=limn→∞(Φn−ψ(n+1))=π212+limn→∞(∑n−1k=11k−ψ(n+1))=1:ψ(n+1):=1n+ψ(n)2:ψ(n+1)=Hn−γπ212+limn→∞(∑n−1k=11k−Hn+γ)∴Φ:=π212+γ−limn→∞(1n)………Φ:=12ζ(2)+γγ::Euler−Mascheroniconstant… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: e-2-x-1-cos-2-x-dx-solve-this-Next Next post: h-2-y-2-k-z-2-s-2-a-2-b-y-2-z-2-s-2-ah-y-y-b-z-z-k-0-h-a-2-yz-b-y-k-z-1-b-a-k-z-hz-1-k-h-b-y-ay-1-Find-s-min-or-at-least-express-s-f-y-or-g-z Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.