Menu Close

advanced-calculus-lim-n-1-n-x-x-2-dx-n-1-solution-n-1-n-x-x-2-dx-k-1-n-1-k-k-1-x




Question Number 139556 by mnjuly1970 last updated on 28/Apr/21
                     ........ advanced ... ... ... calculus........     Φ= lim_(n→∞) {∫_1 ^( n) (x/([x]^2 )) dx −ψ(n+1)}=?      solution:       Φ_n =∫_1 ^( n) (x/([x]^2 )) dx=Σ_(k=1) ^(n−1) ∫_k ^( k+1) (x/k^2 ) dx            = (1/2)Σ_(k=1) ^(n−1) (1/k^2 )(2k+1)=Σ_(k=1) ^(n−1) (1/k)+(1/2)Σ_(k=1) ^(n−1) (1/k^2 )       Φ = lim_(n→∞) (Φ_n −ψ(n+1))            = (π^2 /(12)) +lim_(n→∞) (Σ_(k=1) ^(n−1) (1/k)−ψ(n+1))            =_(2 : ψ(n+1)= H_n −γ ) ^(1 :ψ (n+1) := (1/n) +ψ(n))  (π^2 /(12))+lim_(n→∞) (Σ_(k=1) ^(n−1) (1/k)−H_n +γ)         ∴    Φ := (π^2 /(12)) +γ −lim_(n→∞) ((1/n))                     ......... Φ:=(1/2) ζ (2) +γ                   γ :: Euler− Mascheroni constant...
..advancedcalculus..Φ=limn{1nx[x]2dxψ(n+1)}=?solution:Φn=1nx[x]2dx=n1k=1kk+1xk2dx=12n1k=11k2(2k+1)=n1k=11k+12n1k=11k2Φ=limn(Φnψ(n+1))=π212+limn(n1k=11kψ(n+1))=1:ψ(n+1):=1n+ψ(n)2:ψ(n+1)=Hnγπ212+limn(n1k=11kHn+γ)Φ:=π212+γlimn(1n)Φ:=12ζ(2)+γγ::EulerMascheroniconstant

Leave a Reply

Your email address will not be published. Required fields are marked *