Menu Close

advanced-calculus-please-evaluate-1-n-1-H-n-2n-1-2-2-0-1-xln-x-ln-1-x-1-x-dx-note-H-n-1-1-2-1-3-1-n-0-1-




Question Number 137093 by mnjuly1970 last updated on 29/Mar/21
         .....advanced    calculus....       please  evaluate::         1: Σ_(n=1 ) ^∞ (H_n /((2n+1)^2 )) =?      2: ∫_0 ^( 1) ((xln(x)ln(1−x))/(1−x))dx=?    note:H_n =1+(1/2)+(1/3)+...+(1/n)=∫_0 ^( 1) ((1−x^n )/(1−x))dx
..advancedcalculus.pleaseevaluate::1:n=1Hn(2n+1)2=?2:01xln(x)ln(1x)1xdx=?note:Hn=1+12+13++1n=011xn1xdx
Answered by Ar Brandon last updated on 31/Mar/21
Λ=∫_0 ^1 ((xln(x)ln(1−x))/(1−x))dx     ={xln(x)∙((ln^2 (1−x))/(−2))+(1/2)∫(1+lnx)ln^2 (1−x)dx}_0 ^1      =(1/2)∫_0 ^1 (1+lnx)ln^2 (1−x)dx=(1/2)∫_0 ^1 (1+ln(1−x))ln^2 xdx     =(1/2){∫_0 ^1 ln^2 xdx+∫_0 ^1 ln(1−x)ln^2 xdx}     =(1/2){(∂^2 /∂α^2 )∣_(α=0) ∫_0 ^1 x^α dx−(∂^2 /∂ρ^2 )∣_(ρ=0) ∫_0 ^1 Σ_(n=1) ^∞ (x^(n+ρ) /n)}     =(1/2){(∂^2 /∂α^2 )∣_(α=0) (1/(α+1))−(∂^2 /∂ρ^2 )∣_(ρ=0) Σ_(n=1) ^∞ (1/(n(n+ρ+1)))}     =(1/2){2−Σ_(n=1) ^∞ (2/(n(n+1)^3 ))}=1−Σ_(n=1) ^∞ (1/(n(n+1)^3 ))     =1−Σ_(n=1) ^∞ {(1/n)−(1/(n+1))−(1/((n+1)^2 ))−(1/((n+1)^3 ))}     =1−1+Σ_(n=1) ^∞ (1/((n+1)^2 ))+Σ_(n=1) ^∞ (1/((n+1)^3 ))     =Σ_(n=1) ^∞ (1/n^2 )−1+Σ_(n=1) ^∞ (1/n^3 )−1=ζ(2)+ζ(3)−2=(π^2 /6)+ζ(3)−2
Λ=01xln(x)ln(1x)1xdx={xln(x)ln2(1x)2+12(1+lnx)ln2(1x)dx}01=1201(1+lnx)ln2(1x)dx=1201(1+ln(1x))ln2xdx=12{01ln2xdx+01ln(1x)ln2xdx}=12{2α2α=001xαdx2ρ2ρ=001n=1xn+ρn}=12{2α2α=01α+12ρ2ρ=0n=11n(n+ρ+1)}=12{2n=12n(n+1)3}=1n=11n(n+1)3=1n=1{1n1n+11(n+1)21(n+1)3}=11+n=11(n+1)2+n=11(n+1)3=n=11n21+n=11n31=ζ(2)+ζ(3)2=π26+ζ(3)2
Answered by Dwaipayan Shikari last updated on 29/Mar/21
ð(a,b)=∫_0 ^1 x^(α−1) (1−x)^(β−1) dx  (∂/(∂a∂b))ð(a,b)=∫_0 ^1 log(x)log(1−x)x^(α−1) (1−x)^(β−1) dx  ((∂ð(a,b))/(∂a∂b))=((∂(((Γ(a)Γ(b))/(Γ(a+b)))))/(∂a∂b))=(∂/∂a)(((Γ(a)Γ(a+b)Γ′(b)−Γ(b)Γ(a)Γ′(a+b))/(Γ^2 (a+b))))  (∂/∂a)(((Γ(a)Γ′(b))/(Γ(a+b)))−((Γ(b)Γ(a)ψ(a+b))/(Γ(a+b))))  =((Γ(a+b)Γ′(a)Γ′(b)−Γ′(a+b)Γ(a)Γ′(b))/(Γ^2 (a+b)))−((Γ′(b)ψ(a+b)Γ(a)+ψ′(a+b)Γ(a)Γ(b)−ψ^2 (a+b)Γ(a)Γ(b)Γ(b+a))/(Γ^2 (a+b)))  a=1  b=0
ð(a,b)=01xα1(1x)β1dxabð(a,b)=01log(x)log(1x)xα1(1x)β1dxð(a,b)ab=(Γ(a)Γ(b)Γ(a+b))ab=a(Γ(a)Γ(a+b)Γ(b)Γ(b)Γ(a)Γ(a+b)Γ2(a+b))a(Γ(a)Γ(b)Γ(a+b)Γ(b)Γ(a)ψ(a+b)Γ(a+b))=Γ(a+b)Γ(a)Γ(b)Γ(a+b)Γ(a)Γ(b)Γ2(a+b)Γ(b)ψ(a+b)Γ(a)+ψ(a+b)Γ(a)Γ(b)ψ2(a+b)Γ(a)Γ(b)Γ(b+a)Γ2(a+b)a=1b=0
Answered by Dwaipayan Shikari last updated on 29/Mar/21
Σ_(n=1) ^∞ (H_n /((2n+1)^2 ))=∫_0 ^1 Σ_(n=1) ^∞ (H_n /(2n+1))x^(2n+1)   Σ_(n=1) ^∞ H_n x^(2n+α) =−x^α ((log(1−x^2 ))/(1−x^2 ))  Σ_(n=1) ^∞ (H_n /(2n+α+1))=−∫_0 ^1 ((x^α log(1−x^2 ))/(1−x^2 ))dx  Σ_(n=1) ^∞ (H_n /((2n+α+1)^2 ))=(∂/∂α)∫_0 ^1 ((x^α log(1−x^2 ))/(1−x^2 ))dx  =(∂/∂α)∫_0 ^1 ((u^((α−1)/2) log(1−u))/(1−u))du=(∂/∂α).(∂/∂ϑ)∣_(ϑ=0) (((Γ(((α+1)/2))Γ(ϑ))/(Γ((α/2)+(1/2)+ϑ))))∣
n=1Hn(2n+1)2=01n=1Hn2n+1x2n+1n=1Hnx2n+α=xαlog(1x2)1x2n=1Hn2n+α+1=01xαlog(1x2)1x2dxn=1Hn(2n+α+1)2=α01xαlog(1x2)1x2dx=α01uα12log(1u)1udu=α.ϑϑ=0(Γ(α+12)Γ(ϑ)Γ(α2+12+ϑ))
Commented by mnjuly1970 last updated on 29/Mar/21
thanks alot...
thanksalot
Answered by Ñï= last updated on 29/Mar/21
∫_0 ^1 ((xln(x)ln(1−x))/(1−x))dx=∫_0 ^1 (((1−x)ln(x)ln(1−x))/x)dx  =∫_0 ^1 ((ln(x)ln(1−x))/x)dx−∫_0 ^1 ln(x)ln(1−x)dx  =∫_0 ^1 ((Li_2 (x))/x)dx+∫_0 ^1 x(((ln(1−x))/x)−((lnx)/(1−x)))dx  =Li_3 (1)+∫_0 ^1 ln(1−x)dx−∫_0 ^1 (1−x)((ln(1−x))/x)dx  =Li_3 (1)+∫_0 ^1 ln(1−x)dx−∫_0 ^1 ((ln(1−x))/x)−ln(1−x)dx  =Li_3 (1)+2∫_0 ^1 lnxdx+Li_2 (1)  =Li_3 (1)+Li_2 (1)−2
01xln(x)ln(1x)1xdx=01(1x)ln(x)ln(1x)xdx=01ln(x)ln(1x)xdx01ln(x)ln(1x)dx=01Li2(x)xdx+01x(ln(1x)xlnx1x)dx=Li3(1)+01ln(1x)dx01(1x)ln(1x)xdx=Li3(1)+01ln(1x)dx01ln(1x)xln(1x)dx=Li3(1)+201lnxdx+Li2(1)=Li3(1)+Li2(1)2
Commented by mnjuly1970 last updated on 29/Mar/21
thanks alot ...
thanksalot

Leave a Reply

Your email address will not be published. Required fields are marked *