Question Number 137093 by mnjuly1970 last updated on 29/Mar/21
$$\:\:\:\:\:\:\:\:\:…..{advanced}\:\:\:\:{calculus}…. \\ $$$$\:\:\:\:\:{please}\:\:{evaluate}::\:\: \\ $$$$\:\:\:\:\:\mathrm{1}:\:\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:=? \\ $$$$\:\:\:\:\mathrm{2}:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{xln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}}{dx}=? \\ $$$$\:\:{note}:{H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}^{{n}} }{\mathrm{1}−{x}}{dx} \\ $$
Answered by Ar Brandon last updated on 31/Mar/21
$$\Lambda=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{xln}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{1}−\mathrm{x}}\mathrm{dx} \\ $$$$\:\:\:=\left\{\mathrm{xln}\left(\mathrm{x}\right)\centerdot\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}\right)}{−\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{1}+\mathrm{lnx}\right)\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}\right)\mathrm{dx}\right\}_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\mathrm{lnx}\right)\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}\right)\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\right)\mathrm{ln}^{\mathrm{2}} \mathrm{xdx} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}^{\mathrm{2}} \mathrm{xdx}+\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{ln}^{\mathrm{2}} \mathrm{xdx}\right\} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{\partial^{\mathrm{2}} }{\partial\alpha^{\mathrm{2}} }\mid_{\alpha=\mathrm{0}} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\alpha} \mathrm{dx}−\frac{\partial^{\mathrm{2}} }{\partial\rho^{\mathrm{2}} }\mid_{\rho=\mathrm{0}} \int_{\mathrm{0}} ^{\mathrm{1}} \underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{x}^{\mathrm{n}+\rho} }{\mathrm{n}}\right\} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{\partial^{\mathrm{2}} }{\partial\alpha^{\mathrm{2}} }\mid_{\alpha=\mathrm{0}} \frac{\mathrm{1}}{\alpha+\mathrm{1}}−\frac{\partial^{\mathrm{2}} }{\partial\rho^{\mathrm{2}} }\mid_{\rho=\mathrm{0}} \underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\rho+\mathrm{1}\right)}\right\} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{2}−\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}}{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{3}} }\right\}=\mathrm{1}−\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\:\:\:=\mathrm{1}−\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{\mathrm{1}}{\mathrm{n}}−\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}−\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{3}} }\right\} \\ $$$$\:\:\:=\mathrm{1}−\mathrm{1}+\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} }+\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\:\:\:=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }−\mathrm{1}+\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} }−\mathrm{1}=\zeta\left(\mathrm{2}\right)+\zeta\left(\mathrm{3}\right)−\mathrm{2}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\zeta\left(\mathrm{3}\right)−\mathrm{2} \\ $$
Answered by Dwaipayan Shikari last updated on 29/Mar/21
$$\eth\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\alpha−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{\beta−\mathrm{1}} {dx} \\ $$$$\frac{\partial}{\partial{a}\partial{b}}\eth\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left({x}\right){log}\left(\mathrm{1}−{x}\right){x}^{\alpha−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{\beta−\mathrm{1}} {dx} \\ $$$$\frac{\partial\eth\left({a},{b}\right)}{\partial{a}\partial{b}}=\frac{\partial\left(\frac{\Gamma\left({a}\right)\Gamma\left({b}\right)}{\Gamma\left({a}+{b}\right)}\right)}{\partial{a}\partial{b}}=\frac{\partial}{\partial{a}}\left(\frac{\Gamma\left({a}\right)\Gamma\left({a}+{b}\right)\Gamma'\left({b}\right)−\Gamma\left({b}\right)\Gamma\left({a}\right)\Gamma'\left({a}+{b}\right)}{\Gamma^{\mathrm{2}} \left({a}+{b}\right)}\right) \\ $$$$\frac{\partial}{\partial{a}}\left(\frac{\Gamma\left({a}\right)\Gamma'\left({b}\right)}{\Gamma\left({a}+{b}\right)}−\frac{\Gamma\left({b}\right)\Gamma\left({a}\right)\psi\left({a}+{b}\right)}{\Gamma\left({a}+{b}\right)}\right) \\ $$$$=\frac{\Gamma\left({a}+{b}\right)\Gamma'\left({a}\right)\Gamma'\left({b}\right)−\Gamma'\left({a}+{b}\right)\Gamma\left({a}\right)\Gamma'\left({b}\right)}{\Gamma^{\mathrm{2}} \left({a}+{b}\right)}−\frac{\Gamma'\left({b}\right)\psi\left({a}+{b}\right)\Gamma\left({a}\right)+\psi'\left({a}+{b}\right)\Gamma\left({a}\right)\Gamma\left({b}\right)−\psi^{\mathrm{2}} \left({a}+{b}\right)\Gamma\left({a}\right)\Gamma\left({b}\right)\Gamma\left({b}+{a}\right)}{\Gamma^{\mathrm{2}} \left({a}+{b}\right)} \\ $$$${a}=\mathrm{1}\:\:{b}=\mathrm{0} \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 29/Mar/21
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{\mathrm{2}{n}+\mathrm{1}}{x}^{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{H}_{{n}} {x}^{\mathrm{2}{n}+\alpha} =−{x}^{\alpha} \frac{{log}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{\mathrm{2}{n}+\alpha+\mathrm{1}}=−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\alpha} {log}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{\left(\mathrm{2}{n}+\alpha+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\partial}{\partial\alpha}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\alpha} {log}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$=\frac{\partial}{\partial\alpha}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\frac{\alpha−\mathrm{1}}{\mathrm{2}}} {log}\left(\mathrm{1}−{u}\right)}{\mathrm{1}−{u}}{du}=\frac{\partial}{\partial\alpha}.\frac{\partial}{\partial\vartheta}\mid_{\vartheta=\mathrm{0}} \left(\frac{\Gamma\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\vartheta\right)}{\Gamma\left(\frac{\alpha}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}+\vartheta\right)}\right)\mid \\ $$
Commented by mnjuly1970 last updated on 29/Mar/21
$${thanks}\:{alot}… \\ $$
Answered by Ñï= last updated on 29/Mar/21
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}\right){ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right)}{{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right)}{{x}}{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{Li}_{\mathrm{2}} \left({x}\right)}{{x}}{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left(\frac{{ln}\left(\mathrm{1}−{x}\right)}{{x}}−\frac{{lnx}}{\mathrm{1}−{x}}\right){dx} \\ $$$$={Li}_{\mathrm{3}} \left(\mathrm{1}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right){dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}\right)\frac{{ln}\left(\mathrm{1}−{x}\right)}{{x}}{dx} \\ $$$$={Li}_{\mathrm{3}} \left(\mathrm{1}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right){dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right)}{{x}}−{ln}\left(\mathrm{1}−{x}\right){dx} \\ $$$$={Li}_{\mathrm{3}} \left(\mathrm{1}\right)+\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {lnxdx}+{Li}_{\mathrm{2}} \left(\mathrm{1}\right) \\ $$$$={Li}_{\mathrm{3}} \left(\mathrm{1}\right)+{Li}_{\mathrm{2}} \left(\mathrm{1}\right)−\mathrm{2} \\ $$
Commented by mnjuly1970 last updated on 29/Mar/21
$${thanks}\:{alot}\:… \\ $$