Menu Close

advanced-calculus-pove-that-n-0-1-n-2-2n-2n-n-cos-nx-cos-x-4-2cos-x-2-




Question Number 136581 by mnjuly1970 last updated on 23/Mar/21
        .......advanced   calculus....     pove that::  :::Σ_(n=0) ^∞ {(((−1)^n )/2^(2n) ) ((( 2n)),((  n)) ) cos(nx)}=((cos((x/4)))/( (√(2cos((x/2))))))
$$\:\:\:\:\:\:\:\:…….{advanced}\:\:\:{calculus}…. \\ $$$$\:\:\:{pove}\:{that}:: \\ $$$$:::\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left\{\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{\mathrm{2}{n}} }\begin{pmatrix}{\:\mathrm{2}{n}}\\{\:\:{n}}\end{pmatrix}\:{cos}\left({nx}\right)\right\}=\frac{{cos}\left(\frac{{x}}{\mathrm{4}}\right)}{\:\sqrt{\mathrm{2}{cos}\left(\frac{{x}}{\mathrm{2}}\right)}} \\ $$
Answered by Dwaipayan Shikari last updated on 23/Mar/21
(1/2)Σ_(n=0) ^∞  (((2n)),(n) )(−(e^(ix) /2^2 ))^n + (((2n)),(n) )(−(e^(−ix) /4))^n   =(1/2).(1/( (√(1+e^(ix) ))))+(1/(2(√(1+e^(−ix) ))))=((e^((ix)/2) +1)/(2(√(e^(ix) +1))))=((1+cos((x/2))+isin((x/2)))/(2(√(1+cos(x)+isin(x)))))  =((2cos((x/4))(cos(x/4)+isin((x/4))))/(2(√(2cos(x/2)))(√(cos(x/2)+isin(x/2)))))=((cos((x/4)))/( (√(2cos(x/2))))).(e^(ix/4) /e^(ix/4) )=((cos((x/4)))/( (√(2cos(x/2)))))
$$\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}\left(−\frac{{e}^{{ix}} }{\mathrm{2}^{\mathrm{2}} }\right)^{{n}} +\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}\left(−\frac{{e}^{−{ix}} }{\mathrm{4}}\right)^{{n}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{e}^{{ix}} }}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}+{e}^{−{ix}} }}=\frac{{e}^{\frac{{ix}}{\mathrm{2}}} +\mathrm{1}}{\mathrm{2}\sqrt{{e}^{{ix}} +\mathrm{1}}}=\frac{\mathrm{1}+{cos}\left(\frac{{x}}{\mathrm{2}}\right)+{isin}\left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}\sqrt{\mathrm{1}+{cos}\left({x}\right)+{isin}\left({x}\right)}} \\ $$$$=\frac{\mathrm{2}{cos}\left(\frac{{x}}{\mathrm{4}}\right)\left({cos}\frac{{x}}{\mathrm{4}}+{isin}\left(\frac{{x}}{\mathrm{4}}\right)\right)}{\mathrm{2}\sqrt{\mathrm{2}{cos}\frac{{x}}{\mathrm{2}}}\sqrt{{cos}\frac{{x}}{\mathrm{2}}+{isin}\frac{{x}}{\mathrm{2}}}}=\frac{{cos}\left(\frac{{x}}{\mathrm{4}}\right)}{\:\sqrt{\mathrm{2}{cos}\frac{{x}}{\mathrm{2}}}}.\frac{{e}^{{ix}/\mathrm{4}} }{{e}^{{ix}/\mathrm{4}} }=\frac{{cos}\left(\frac{{x}}{\mathrm{4}}\right)}{\:\sqrt{\mathrm{2}{cos}\frac{{x}}{\mathrm{2}}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *