Menu Close

advanced-calculus-prove-that-0-1-e-x-2-x-2-dx-pi-




Question Number 136750 by mnjuly1970 last updated on 25/Mar/21
           .....advanced    calculus.....       prove  that ::       ...  ๐›—=โˆซ_0 ^( โˆž) ((1โˆ’e^(โˆ’x^2 ) )/x^2 )dx=(โˆšฯ€)
โ€ฆ..advancedcalculusโ€ฆ..provethat::โ€ฆฯ•=โˆซ0โˆž1โˆ’eโˆ’x2x2dx=ฯ€
Answered by ร‘รฏ= last updated on 25/Mar/21
โˆซ_0 ^โˆž ((1โˆ’e^(โˆ’x^2 ) )/x^2 )dx=โˆซ_0 ^โˆž ((e^(โˆ’0) โˆ’e^(โˆ’x^2 ) )/x^2 )dx=โˆซ_0 ^โˆž โˆซ_0 ^1 e^(โˆ’ax^2 ) dadx  =โˆซ_0 ^1 ((โˆšฯ€)/(2(โˆša)))da=(โˆšฯ€)
โˆซ0โˆž1โˆ’eโˆ’x2x2dx=โˆซ0โˆžeโˆ’0โˆ’eโˆ’x2x2dx=โˆซ0โˆžโˆซ01eโˆ’ax2dadx=โˆซ01ฯ€2ada=ฯ€
Commented by mnjuly1970 last updated on 25/Mar/21
   thanks alot...
thanksalotโ€ฆ
Answered by Dwaipayan Shikari last updated on 25/Mar/21
ฮท(ฯ†)=โˆซ_0 ^โˆž ((e^(โˆ’ฯ†x^2 ) โˆ’e^(โˆ’x^2 ) )/x^2 )dxโ‡’ฮทโ€ฒ(ฯ†)=โˆ’โˆซ_0 ^โˆž e^(โˆ’ฯ†x^2 ) dx=โˆ’((โˆšฯ€)/(2(โˆšฯ†)))  ฮท(ฯ†)=โˆ’(โˆš(ฯ€ฯ†))+Cโ‡’ฮท(1)=0โ‡’C=(โˆšฯ€)   ฮท(ฯ†)=(โˆšฯ€) (1โˆ’(โˆšฯ†)) โ‡’ฮท(0)=(โˆšฯ€)
ฮท(ฯ•)=โˆซ0โˆžeโˆ’ฯ•x2โˆ’eโˆ’x2x2dxโ‡’ฮทโ€ฒ(ฯ•)=โˆ’โˆซ0โˆžeโˆ’ฯ•x2dx=โˆ’ฯ€2ฯ•ฮท(ฯ•)=โˆ’ฯ€ฯ•+Cโ‡’ฮท(1)=0โ‡’C=ฯ€ฮท(ฯ•)=ฯ€(1โˆ’ฯ•)โ‡’ฮท(0)=ฯ€
Answered by mathmax by abdo last updated on 25/Mar/21
let f(a) =โˆซ_0 ^โˆž  ((e^(โˆ’ax^2 ) โˆ’e^(โˆ’x^2 ) )/x^2 )dx  with a>0 โ‡’f^โ€ฒ (a)=โˆ’โˆซ_0 ^โˆž  e^(โˆ’ax^2 ) dx  =โˆ’โˆซ_0 ^โˆž  e^(โˆ’((โˆša)x)^2 ) dx =_((โˆša)x=t) โˆ’  โˆซ_0 ^โˆž  e^(โˆ’t^2 ) (dt/( (โˆša))) =โˆ’(1/( (โˆša))).((โˆšฯ€)/2) โ‡’f(a)=(โˆšฯ€)โˆซ (da/(2(โˆša))) +C  =โˆ’(โˆš(ฯ€a)) +C  f(1)=0=โˆ’(โˆšฯ€) +C โ‡’C=(โˆšฯ€) โ‡’f(a)=(โˆšฯ€)โˆ’(โˆš(ฯ€a))  ฮฆ=f(0)=(โˆšฯ€)
letf(a)=โˆซ0โˆžeโˆ’ax2โˆ’eโˆ’x2x2dxwitha>0โ‡’fโ€ฒ(a)=โˆ’โˆซ0โˆžeโˆ’ax2dx=โˆ’โˆซ0โˆžeโˆ’(ax)2dx=ax=tโˆ’โˆซ0โˆžeโˆ’t2dta=โˆ’1a.ฯ€2โ‡’f(a)=ฯ€โˆซda2a+C=โˆ’ฯ€a+Cf(1)=0=โˆ’ฯ€+Cโ‡’C=ฯ€โ‡’f(a)=ฯ€โˆ’ฯ€aฮฆ=f(0)=ฯ€

Leave a Reply

Your email address will not be published. Required fields are marked *