Menu Close

Advanced-Calculus-prove-that-0-1-ln-1-x-1-x-2-dx-pi-8-ln-2-G-where-G-is-catalan-number-




Question Number 137973 by mnjuly1970 last updated on 08/Apr/21
                       .......Advanced ... ... ... ... Calculus.......      prove that:::          𝛗=∫_0 ^( 1) ((ln(1−x))/(1+x^2 ))dx=(π/8)ln(2)−G ...✓      where  G is catalan number...
.AdvancedCalculus.provethat:::ϕ=01ln(1x)1+x2dx=π8ln(2)GwhereGiscatalannumber
Answered by EnterUsername last updated on 08/Apr/21
∫_0 ^1 ((ln(1−x))/(1+x^2 ))dx=∫_0 ^(π/4) ln(1−tanθ)dθ  =∫_0 ^(π/4) ln(cosx−sinx)dx−∫_0 ^(π/4) lncosxdx  =∫_0 ^(π/4) ln[(√2)cos(x+(π/4))]dx−((G/2)−((πln2)/4))  =(π/8)ln2+∫_0 ^(π/4) ln(sinx)dx−((G/2)−((πln2)/4))  =(π/8)ln2−(G/2)−((πln2)/4)−((G/2)−((πln2)/4))=(π/8)ln2−G
01ln(1x)1+x2dx=0π4ln(1tanθ)dθ=0π4ln(cosxsinx)dx0π4lncosxdx=0π4ln[2cos(x+π4)]dx(G2πln24)=π8ln2+0π4ln(sinx)dx(G2πln24)=π8ln2G2πln24(G2πln24)=π8ln2G
Commented by mnjuly1970 last updated on 08/Apr/21
 grateful...
grateful
Answered by mathmax by abdo last updated on 09/Apr/21
f(a)=∫_0 ^1  ((ln(1+ax))/(1+x^2 ))dx ⇒f^′ (a)=∫_0 ^1  (x/((ax+1)(x^2  +1)))dx  =(1/a)∫_0 ^1  ((ax+1−1)/((ax+1)(x^2  +1)))dx =(1/a)[arctanx]_0 ^1 −(1/a)∫_0 ^1  (dx/((ax+1)(x^2  +1)))  =(π/(4a))−(1/a)∫_0 ^1  (dx/((ax+1)(x^2  +1)))  let decompose F(x)=(1/((ax+1)(x^2  +1)))  F(x)=(α/(ax+1)) +((mx+n)/(x^2  +1))  α=(1/((1/a^2 )+1)) =(a^2 /(1+a^2 ))  lim_(x→+∞) xF(x)=0=(α/a) +m ⇒m=−(a/(1+a^2 ))  F(o)=1=α+n ⇒n=1−(a^2 /(1+a^2 ))=(1/(1+a^2 )) ⇒F(x)=(a^2 /((a^2  +1)(ax+1)))  +((−(a/(a^2  +1))x+(1/(1+a^2 )))/(x^2  +1)) ⇒∫_0 ^1  F(x)dx=(a^2 /(a^2  +1))∫_0 ^1  (dx/(ax+1))  −(1/(a^2  +1))∫_0 ^1  ((ax−1)/(x^2  +1))dx =(a/(a^2  +1))[ln(ax+1)]_0 ^1 −(a/(2(a^2  +1)))∫_0 ^1  ((2x)/(x^2  +1))dx  +(π/(4(a^2  +1)))=((aln(a+1))/(a^2  +1)) −(a/(2(a^2  +1)))ln(2)+(π/(4(a^2  +1))) ⇒  f^′ (a)=(π/(4a))−((ln(a+1))/(a^2  +1))+((ln2)/(2(a^2  +1))) −(π/(4a(a^2  +1)))  =(π/(4a))(1−(1/(a^2 +1)))−((ln(a+1))/(a^2  +1))+((ln2)/(2(a^2  +1))) =((πa)/4)−((ln(a+1))/(a^2  +1))+((ln2)/(2(a^2  +1)))  ⇒∫_0 ^1  f^′ (a)da =(π/4)∫_0 ^1  ada −∫_0 ^1  ((ln(a+1))/(a^2  +1))da+((ln2)/2)∫_0 ^1  (da/(a^2  +1))  =(π/4)×(1/2) −∫_0 ^1  ((ln(1+x))/(x^2  +1))dx +((ln2)/2).(π/4)  =(π/8)−∫_0 ^1  ((ln(1+x))/(x^2  +1))dx+(π/8)ln2  =f(1)=∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx ⇒  2∫_0 ^1  ((ln(1+x))/(x^2  +1))dx =(π/8)+(π/8)ln2 ⇒∫_0 ^1  ((ln(1+x))/(x^2  +1))dx =(π/(16))+(π/(16))ln2  ?  if we want ∫_0 ^1  ((ln(1−x))/(x^2  +1))dx we use the parametric  f(a)=∫_0 ^1  ((ln(1−ax))/(x^2  +1))dx....be continued....
f(a)=01ln(1+ax)1+x2dxf(a)=01x(ax+1)(x2+1)dx=1a01ax+11(ax+1)(x2+1)dx=1a[arctanx]011a01dx(ax+1)(x2+1)=π4a1a01dx(ax+1)(x2+1)letdecomposeF(x)=1(ax+1)(x2+1)F(x)=αax+1+mx+nx2+1α=11a2+1=a21+a2limx+xF(x)=0=αa+mm=a1+a2F(o)=1=α+nn=1a21+a2=11+a2F(x)=a2(a2+1)(ax+1)+aa2+1x+11+a2x2+101F(x)dx=a2a2+101dxax+11a2+101ax1x2+1dx=aa2+1[ln(ax+1)]01a2(a2+1)012xx2+1dx+π4(a2+1)=aln(a+1)a2+1a2(a2+1)ln(2)+π4(a2+1)f(a)=π4aln(a+1)a2+1+ln22(a2+1)π4a(a2+1)=π4a(11a2+1)ln(a+1)a2+1+ln22(a2+1)=πa4ln(a+1)a2+1+ln22(a2+1)01f(a)da=π401ada01ln(a+1)a2+1da+ln2201daa2+1=π4×1201ln(1+x)x2+1dx+ln22.π4=π801ln(1+x)x2+1dx+π8ln2=f(1)=01ln(1+x)1+x2dx201ln(1+x)x2+1dx=π8+π8ln201ln(1+x)x2+1dx=π16+π16ln2?ifwewant01ln(1x)x2+1dxweusetheparametricf(a)=01ln(1ax)x2+1dx.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *