Advanced-Calculus-prove-that-0-1-ln-1-x-1-x-2-dx-pi-8-ln-2-G-where-G-is-catalan-number- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 137973 by mnjuly1970 last updated on 08/Apr/21 …….Advanced…………Calculus…….provethat:::ϕ=∫01ln(1−x)1+x2dx=π8ln(2)−G…✓whereGiscatalannumber… Answered by EnterUsername last updated on 08/Apr/21 ∫01ln(1−x)1+x2dx=∫0π4ln(1−tanθ)dθ=∫0π4ln(cosx−sinx)dx−∫0π4lncosxdx=∫0π4ln[2cos(x+π4)]dx−(G2−πln24)=π8ln2+∫0π4ln(sinx)dx−(G2−πln24)=π8ln2−G2−πln24−(G2−πln24)=π8ln2−G Commented by mnjuly1970 last updated on 08/Apr/21 grateful… Answered by mathmax by abdo last updated on 09/Apr/21 f(a)=∫01ln(1+ax)1+x2dx⇒f′(a)=∫01x(ax+1)(x2+1)dx=1a∫01ax+1−1(ax+1)(x2+1)dx=1a[arctanx]01−1a∫01dx(ax+1)(x2+1)=π4a−1a∫01dx(ax+1)(x2+1)letdecomposeF(x)=1(ax+1)(x2+1)F(x)=αax+1+mx+nx2+1α=11a2+1=a21+a2limx→+∞xF(x)=0=αa+m⇒m=−a1+a2F(o)=1=α+n⇒n=1−a21+a2=11+a2⇒F(x)=a2(a2+1)(ax+1)+−aa2+1x+11+a2x2+1⇒∫01F(x)dx=a2a2+1∫01dxax+1−1a2+1∫01ax−1x2+1dx=aa2+1[ln(ax+1)]01−a2(a2+1)∫012xx2+1dx+π4(a2+1)=aln(a+1)a2+1−a2(a2+1)ln(2)+π4(a2+1)⇒f′(a)=π4a−ln(a+1)a2+1+ln22(a2+1)−π4a(a2+1)=π4a(1−1a2+1)−ln(a+1)a2+1+ln22(a2+1)=πa4−ln(a+1)a2+1+ln22(a2+1)⇒∫01f′(a)da=π4∫01ada−∫01ln(a+1)a2+1da+ln22∫01daa2+1=π4×12−∫01ln(1+x)x2+1dx+ln22.π4=π8−∫01ln(1+x)x2+1dx+π8ln2=f(1)=∫01ln(1+x)1+x2dx⇒2∫01ln(1+x)x2+1dx=π8+π8ln2⇒∫01ln(1+x)x2+1dx=π16+π16ln2?ifwewant∫01ln(1−x)x2+1dxweusetheparametricf(a)=∫01ln(1−ax)x2+1dx….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-72438Next Next post: Question-6905 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.