advanced-calculus-prove-that-0-1-ln-1-x-2-arctan-x-x-2-dx-proof-substitution-x-tan-0-pi-4-ln-1-tan-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 138283 by mnjuly1970 last updated on 11/Apr/21 ……advanced………..calculus……provethat::ϕ=∫01ln(1+x2).arctan(x)x2dx=proof:::ϕ=x=tan(θ)⟨substitution⟩∫0π4ln(1+tan2(θ)).θtan2(θ)(1+tan2(θ))dθ=⟨simplification⟩∫0π4θ.ln(1cos2(θ))sin2(θ)dθ=−2∫0π4θ.ln(cos(θ)sin2(θ)dθ=i.b.p2{[(cot(θ).θ.ln(cos(θ))]0π4−∫0π4(cot(θ).[ln(cos(θ))−θ.tan(θ)]dθ=2.π4.ln(22)−2∫0π4cot(θ).ln(cos(θ))dθ+2∫0π4θdθ=−π4ln(2)−Φ+π216Φ=∫0π4cos(θ)sin(θ).ln(1−sin2(θ))dθ=sin(θ)=y∫022ln(1−y2)ydy=−∫022∑∞n=1y2n−1ndy=−Σ[y2n2n2]022=−12li2(12)=−12{π212−12ln2(2)}=−π224+14ln2(2)…∴ϕ=−π4ln(2)+π224+14ln2(2)+π216………ϕ=5π248−12π48ln(2)+1248ln2(2)…..……..ϕ=148{5π2−12πln(2)+12ln2(2)} Commented by Dwaipayan Shikari last updated on 11/Apr/21 Nicesir! Commented by mnjuly1970 last updated on 11/Apr/21 thanksalotmrpsaan….. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-0-e-x-2-y-2-sin-x-2-y-2-dxdy-Next Next post: x-x-4-32-solution-method- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.