Menu Close

advanced-calculus-prove-that-0-1-ln-1-x-2-arctan-x-x-2-dx-proof-substitution-x-tan-0-pi-4-ln-1-tan-2-




Question Number 138283 by mnjuly1970 last updated on 11/Apr/21
           ......advanced   ...........  calculus......    prove that::         𝛗=∫_0 ^( 1) ((ln(1+x^2 ).arctan(x))/x^2 )dx=   proof:::     𝛗=_(⟨substitution⟩) ^(x=tan(θ)) ∫_0 ^( (π/4)) ((ln(1+tan^2 (θ)).θ)/(tan^2 (θ)))(1+tan^2 (θ))dθ  =^(⟨simplification⟩)  ∫_0 ^( (π/4)) ((θ.ln((1/(cos^2 (θ)))))/(sin^2 (θ)))dθ         =−2∫_0 ^( (π/4)) ((θ.ln(cos(θ))/(sin^2 (θ)))dθ       =^(i.b.p) 2{[(cot(θ).θ.ln(cos(θ))]_0 ^(π/4) −∫_0 ^( (π/4)) (cot(θ).[ln(cos(θ))−θ.tan(θ)]dθ        =2.(π/4).ln(((√2)/2))−2∫_0 ^( (π/4)) cot(θ).ln(cos(θ))dθ+2∫_0 ^( (π/4)) θdθ        =((−π)/4)ln(2)−Φ+(π^2 /(16))        Φ=∫_0 ^( (π/4)) ((cos(θ))/(sin(θ))).ln(1−sin^2 (θ))dθ     =^(sin(θ)=y)  ∫_0 ^( ((√2)/2)) ((ln(1−y^2 ))/y)dy=−∫_0 ^( ((√2)/2)) Σ_(n=1) ^∞ (y^(2n−1) /n)dy        =−Σ[(y^(2n) /(2n^2 ))]_0 ^( ((√2)/2)) =((−1)/2) li_2 ((1/2))        =((−1)/2){(π^2 /(12))−(1/2)ln^2 (2)}=((−π^2 )/(24))+(1/4)ln^2 (2)...          ∴     𝛗=((−π)/4)ln(2)+(π^2 /(24))+(1/4)ln^2 (2)+(π^2 /(16))       .........    𝛗 =((5π^2 )/(48))−((12π)/(48))ln(2)+((12)/(48)) ln^2 (2) .....            ........𝛗=(1/(48)){5π^2 −12πln(2)+12ln^2 (2)}
advanced..calculusprovethat::ϕ=01ln(1+x2).arctan(x)x2dx=proof:::ϕ=x=tan(θ)substitution0π4ln(1+tan2(θ)).θtan2(θ)(1+tan2(θ))dθ=simplification0π4θ.ln(1cos2(θ))sin2(θ)dθ=20π4θ.ln(cos(θ)sin2(θ)dθ=i.b.p2{[(cot(θ).θ.ln(cos(θ))]0π40π4(cot(θ).[ln(cos(θ))θ.tan(θ)]dθ=2.π4.ln(22)20π4cot(θ).ln(cos(θ))dθ+20π4θdθ=π4ln(2)Φ+π216Φ=0π4cos(θ)sin(θ).ln(1sin2(θ))dθ=sin(θ)=y022ln(1y2)ydy=022n=1y2n1ndy=Σ[y2n2n2]022=12li2(12)=12{π21212ln2(2)}=π224+14ln2(2)ϕ=π4ln(2)+π224+14ln2(2)+π216ϕ=5π24812π48ln(2)+1248ln2(2)....ϕ=148{5π212πln(2)+12ln2(2)}
Commented by Dwaipayan Shikari last updated on 11/Apr/21
Nice sir!
Nicesir!
Commented by mnjuly1970 last updated on 11/Apr/21
  thanks alot mr psaan.....
thanksalotmrpsaan..

Leave a Reply

Your email address will not be published. Required fields are marked *