Menu Close

advanced-calculus-prove-that-0-1-ln-ln-1-x-dx-ln-1-x-pi-ln-4-




Question Number 137190 by mnjuly1970 last updated on 30/Mar/21
              ....advanced .......  calculus.....          prove that:::  š›—=āˆ«_0 ^( 1) ln(ln((1/x))).(dx/( (āˆš(ln((1/x)))))) =āˆ’(āˆšĻ€) (Ī³+ln(4))
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}\:…….\:\:{calculus}….. \\ $$$$\:\:\:\:\:\:\:\:{prove}\:{that}::: \\ $$$$\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left({ln}\left(\frac{\mathrm{1}}{{x}}\right)\right).\frac{{dx}}{\:\sqrt{{ln}\left(\frac{\mathrm{1}}{{x}}\right)}}\:=āˆ’\sqrt{\pi}\:\left(\gamma+{ln}\left(\mathrm{4}\right)\right) \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 30/Mar/21
log((1/x))=uā‡’x=e^(āˆ’u) ā‡’1=āˆ’e^(āˆ’u) (du/dx)  =āˆ’āˆ«_āˆž ^0 t^(āˆ’(1/2)) e^(āˆ’u) log(t)dt  =Ī“ā€²((1/2))=āˆ’(āˆšĻ€) (Ī³+log(4))
$${log}\left(\frac{\mathrm{1}}{{x}}\right)={u}\Rightarrow{x}={e}^{āˆ’{u}} \Rightarrow\mathrm{1}=āˆ’{e}^{āˆ’{u}} \frac{{du}}{{dx}} \\ $$$$=āˆ’\int_{\infty} ^{\mathrm{0}} {t}^{āˆ’\frac{\mathrm{1}}{\mathrm{2}}} {e}^{āˆ’{u}} {log}\left({t}\right){dt} \\ $$$$=\Gamma'\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=āˆ’\sqrt{\pi}\:\left(\gamma+{log}\left(\mathrm{4}\right)\right) \\ $$
Commented by mnjuly1970 last updated on 30/Mar/21
thank you very much...
$${thank}\:{you}\:{very}\:{much}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *