Menu Close

advanced-calculus-prove-that-0-1-ln-x-ln-1-x-1-x-dx-13-8-3-pi-2-4-ln-2-




Question Number 137501 by mnjuly1970 last updated on 03/Apr/21
       ....advanced .... calculus....    prove that::  𝛗=∫_0 ^( 1) ((ln(x).ln(1−x))/(1+x))dx=((13)/8)ζ(3)−(π^2 /4)ln(2)....
.advanced.calculus.provethat::\boldsymbolϕ=01ln(x).ln(1x)1+xdx=138ζ(3)π24ln(2).
Answered by Ñï= last updated on 04/Apr/21
φ=∫_0 ^1 ((lnx ln(1−x))/(1+x))dx  =∫_0 ^1 ((lnxln(1−x^2 ))/(1+x))−∫_0 ^1 ((lnxln(1+x))/(1+x))dx  =∫_0 ^1 ((lnxln(1−x^2 ))/(1−x^2 ))dx−∫_0 ^1 ((xln xln (1−x^2 ))/(1−x^2 ))dx−∫_0 ^1 ((ln xln (1+x))/(1+x))dx  =(∂/(∂a∂b))∣_(a=0,b=−1) ∫_0 ^1 x^a (1−x^2 )^b dx−(∂/(∂a∂b))∣_(a=1,b=−1) ∫_0 ^1 x^a (1−x^2 )^b dx−{∫((ln(1+x){ln(1+x)+ln(x/(1+x))})/(1+x))}_0 ^1   =(∂/(∂a∂b))∣_(a=0,b=−1) (1/2)∫_0 ^1 u^((a−1)/2) (1−u)^b du−(∂/(∂a∂b))∣_(a=1,b=−1) (1/2)∫_0 ^1 u^((a−1)/2) (1−u)^b du−{∫((ln^2 (1+x))/(1+x))dx+∫((ln(1−(1/(1+x))))/(1+x))ln (1+x)dx}_0 ^1   =(∂/(∂a∂b))∣_(a=0,b=−1) (1/2)B(((a+1)/2),b+1)−(∂/(∂a∂b))∣_(a=1,b=−1) (1/2)B(((a+1)/2),b+1)−(1/3)ln^3 2+Σ_(n=1) ^∞ ∫_0 ^1 (((1+x)^(−n) )/n)∙((ln (1+x))/(1+x))dx  =(3/2)ζ(3)−(π^2 /4)ln2−(1/3)ln^3 2+Σ_(n=1) ^∞ (1/n){∫_0 ^1 (1+x)^(−n−1) ln(1+x)dx}  =(3/2)ζ(3)−(π^2 /4)ln2−(1/3)ln^3 2+Σ_(n=1) ^∞ (1/n){(((1+x)^(−n) )/(−n))ln(1+x)−∫(((1+x)^(−n−1) )/(−n))dx}_0 ^1   =(3/2)ζ(3)−(π^2 /4)ln2−(1/3)ln^3 2−Σ_(n=1) ^∞ (((1+x)^(−n) ln(1+x))/n^2 )∣_0 ^1 +Σ_(n=1) ^∞ (((1+x)^(−n) )/n^3 )∣_0 ^1   =(3/2)ζ(3)−(π^2 /4)ln2−(1/3)ln^3 2−Li_2 ((1/(1+x)))ln(1+x)∣_0 ^1 −Li_3 ((1/(1+x)))∣_0 ^1   =(3/2)ζ(3)−(π^2 /4)ln2−(1/3)ln^3 2−ln2Li_2 ((1/2))−Li_3 ((1/2))+Li_3 (1)  =ans...
ϕ=01lnxln(1x)1+xdx=01lnxln(1x2)1+x01lnxln(1+x)1+xdx=01lnxln(1x2)1x2dx01xlnxln(1x2)1x2dx01lnxln(1+x)1+xdx=aba=0,b=101xa(1x2)bdxaba=1,b=101xa(1x2)bdx{ln(1+x){ln(1+x)+lnx1+x}1+x}01=aba=0,b=11201u(a1)/2(1u)bduaba=1,b=11201u(a1)/2(1u)bdu{ln2(1+x)1+xdx+ln(111+x)1+xln(1+x)dx}01=aba=0,b=112B(a+12,b+1)aba=1,b=112B(a+12,b+1)13ln32+n=101(1+x)nnln(1+x)1+xdx=32ζ(3)π24ln213ln32+n=11n{01(1+x)n1ln(1+x)dx}=32ζ(3)π24ln213ln32+n=11n{(1+x)nnln(1+x)(1+x)n1ndx}01=32ζ(3)π24ln213ln32n=1(1+x)nln(1+x)n201+n=1(1+x)nn301=32ζ(3)π24ln213ln32Li2(11+x)ln(1+x)01Li3(11+x)01=32ζ(3)π24ln213ln32ln2Li2(12)Li3(12)+Li3(1)=ans
Commented by mnjuly1970 last updated on 04/Apr/21
great ...thanks alot...
greatthanksalotgreatthanksalot

Leave a Reply

Your email address will not be published. Required fields are marked *