advanced-calculus-prove-that-0-1-ln-x-ln-1-x-1-x-dx-13-8-3-pi-2-4-ln-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 137501 by mnjuly1970 last updated on 03/Apr/21 ….advanced….calculus….provethat::\boldsymbolϕ=∫01ln(x).ln(1−x)1+xdx=138ζ(3)−π24ln(2)…. Answered by Ñï= last updated on 04/Apr/21 ϕ=∫01lnxln(1−x)1+xdx=∫01lnxln(1−x2)1+x−∫01lnxln(1+x)1+xdx=∫01lnxln(1−x2)1−x2dx−∫01xlnxln(1−x2)1−x2dx−∫01lnxln(1+x)1+xdx=∂∂a∂b∣a=0,b=−1∫01xa(1−x2)bdx−∂∂a∂b∣a=1,b=−1∫01xa(1−x2)bdx−{∫ln(1+x){ln(1+x)+lnx1+x}1+x}01=∂∂a∂b∣a=0,b=−112∫01u(a−1)/2(1−u)bdu−∂∂a∂b∣a=1,b=−112∫01u(a−1)/2(1−u)bdu−{∫ln2(1+x)1+xdx+∫ln(1−11+x)1+xln(1+x)dx}01=∂∂a∂b∣a=0,b=−112B(a+12,b+1)−∂∂a∂b∣a=1,b=−112B(a+12,b+1)−13ln32+∑∞n=1∫01(1+x)−nn⋅ln(1+x)1+xdx=32ζ(3)−π24ln2−13ln32+∑∞n=11n{∫01(1+x)−n−1ln(1+x)dx}=32ζ(3)−π24ln2−13ln32+∑∞n=11n{(1+x)−n−nln(1+x)−∫(1+x)−n−1−ndx}01=32ζ(3)−π24ln2−13ln32−∑∞n=1(1+x)−nln(1+x)n2∣01+∑∞n=1(1+x)−nn3∣01=32ζ(3)−π24ln2−13ln32−Li2(11+x)ln(1+x)∣01−Li3(11+x)∣01=32ζ(3)−π24ln2−13ln32−ln2Li2(12)−Li3(12)+Li3(1)=ans… Commented by mnjuly1970 last updated on 04/Apr/21 great…thanksalot…great…thanksalot… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: An-oil-can-is-to-be-made-in-form-of-a-right-circular-cylinder-that-be-inscribed-in-a-sphere-of-radius-R-obtain-the-maximum-volume-of-the-can-Next Next post: Question-6436 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.