advanced-calculus-prove-that-0-1-ln-x-ln-1-x-1-x-dx-13-8-3-pi-2-4-ln-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 137501 by mnjuly1970 last updated on 03/Apr/21 β¦.advancedβ¦.calculusβ¦.provethat::Ο=β«01ln(x).ln(1βx)1+xdx=138ΞΆ(3)βΟ24ln(2)β¦. Answered by ΓΓ―= last updated on 04/Apr/21 Ο=β«01lnxln(1βx)1+xdx=β«01lnxln(1βx2)1+xββ«01lnxln(1+x)1+xdx=β«01lnxln(1βx2)1βx2dxββ«01xlnxln(1βx2)1βx2dxββ«01lnxln(1+x)1+xdx=ββaβbβ£a=0,b=β1β«01xa(1βx2)bdxβββaβbβ£a=1,b=β1β«01xa(1βx2)bdxβ{β«ln(1+x){ln(1+x)+lnx1+x}1+x}01=ββaβbβ£a=0,b=β112β«01u(aβ1)/2(1βu)bduβββaβbβ£a=1,b=β112β«01u(aβ1)/2(1βu)bduβ{β«ln2(1+x)1+xdx+β«ln(1β11+x)1+xln(1+x)dx}01=ββaβbβ£a=0,b=β112B(a+12,b+1)βββaβbβ£a=1,b=β112B(a+12,b+1)β13ln32+ββn=1β«01(1+x)βnnβ ln(1+x)1+xdx=32ΞΆ(3)βΟ24ln2β13ln32+ββn=11n{β«01(1+x)βnβ1ln(1+x)dx}=32ΞΆ(3)βΟ24ln2β13ln32+ββn=11n{(1+x)βnβnln(1+x)ββ«(1+x)βnβ1βndx}01=32ΞΆ(3)βΟ24ln2β13ln32βββn=1(1+x)βnln(1+x)n2β£01+ββn=1(1+x)βnn3β£01=32ΞΆ(3)βΟ24ln2β13ln32βLi2(11+x)ln(1+x)β£01βLi3(11+x)β£01=32ΞΆ(3)βΟ24ln2β13ln32βln2Li2(12)βLi3(12)+Li3(1)=ansβ¦ Commented by mnjuly1970 last updated on 04/Apr/21 greatβ¦thanksalotβ¦ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: An-oil-can-is-to-be-made-in-form-of-a-right-circular-cylinder-that-be-inscribed-in-a-sphere-of-radius-R-obtain-the-maximum-volume-of-the-can-Next Next post: Question-6436 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.