Menu Close

advanced-calculus-prove-that-0-1-ln-x-ln-1-x-1-x-dx-13-8-3-pi-2-4-ln-2-




Question Number 137501 by mnjuly1970 last updated on 03/Apr/21
       ....advanced .... calculus....    prove that::  𝛗=∫_0 ^( 1) ((ln(x).ln(1βˆ’x))/(1+x))dx=((13)/8)ΞΆ(3)βˆ’(Ο€^2 /4)ln(2)....
….advanced….calculus….provethat::Ο•=∫01ln(x).ln(1βˆ’x)1+xdx=138ΞΆ(3)βˆ’Ο€24ln(2)….
Answered by Ñï= last updated on 04/Apr/21
Ο†=∫_0 ^1 ((lnx ln(1βˆ’x))/(1+x))dx  =∫_0 ^1 ((lnxln(1βˆ’x^2 ))/(1+x))βˆ’βˆ«_0 ^1 ((lnxln(1+x))/(1+x))dx  =∫_0 ^1 ((lnxln(1βˆ’x^2 ))/(1βˆ’x^2 ))dxβˆ’βˆ«_0 ^1 ((xln xln (1βˆ’x^2 ))/(1βˆ’x^2 ))dxβˆ’βˆ«_0 ^1 ((ln xln (1+x))/(1+x))dx  =(βˆ‚/(βˆ‚aβˆ‚b))∣_(a=0,b=βˆ’1) ∫_0 ^1 x^a (1βˆ’x^2 )^b dxβˆ’(βˆ‚/(βˆ‚aβˆ‚b))∣_(a=1,b=βˆ’1) ∫_0 ^1 x^a (1βˆ’x^2 )^b dxβˆ’{∫((ln(1+x){ln(1+x)+ln(x/(1+x))})/(1+x))}_0 ^1   =(βˆ‚/(βˆ‚aβˆ‚b))∣_(a=0,b=βˆ’1) (1/2)∫_0 ^1 u^((aβˆ’1)/2) (1βˆ’u)^b duβˆ’(βˆ‚/(βˆ‚aβˆ‚b))∣_(a=1,b=βˆ’1) (1/2)∫_0 ^1 u^((aβˆ’1)/2) (1βˆ’u)^b duβˆ’{∫((ln^2 (1+x))/(1+x))dx+∫((ln(1βˆ’(1/(1+x))))/(1+x))ln (1+x)dx}_0 ^1   =(βˆ‚/(βˆ‚aβˆ‚b))∣_(a=0,b=βˆ’1) (1/2)B(((a+1)/2),b+1)βˆ’(βˆ‚/(βˆ‚aβˆ‚b))∣_(a=1,b=βˆ’1) (1/2)B(((a+1)/2),b+1)βˆ’(1/3)ln^3 2+Ξ£_(n=1) ^∞ ∫_0 ^1 (((1+x)^(βˆ’n) )/n)βˆ™((ln (1+x))/(1+x))dx  =(3/2)ΞΆ(3)βˆ’(Ο€^2 /4)ln2βˆ’(1/3)ln^3 2+Ξ£_(n=1) ^∞ (1/n){∫_0 ^1 (1+x)^(βˆ’nβˆ’1) ln(1+x)dx}  =(3/2)ΞΆ(3)βˆ’(Ο€^2 /4)ln2βˆ’(1/3)ln^3 2+Ξ£_(n=1) ^∞ (1/n){(((1+x)^(βˆ’n) )/(βˆ’n))ln(1+x)βˆ’βˆ«(((1+x)^(βˆ’nβˆ’1) )/(βˆ’n))dx}_0 ^1   =(3/2)ΞΆ(3)βˆ’(Ο€^2 /4)ln2βˆ’(1/3)ln^3 2βˆ’Ξ£_(n=1) ^∞ (((1+x)^(βˆ’n) ln(1+x))/n^2 )∣_0 ^1 +Ξ£_(n=1) ^∞ (((1+x)^(βˆ’n) )/n^3 )∣_0 ^1   =(3/2)ΞΆ(3)βˆ’(Ο€^2 /4)ln2βˆ’(1/3)ln^3 2βˆ’Li_2 ((1/(1+x)))ln(1+x)∣_0 ^1 βˆ’Li_3 ((1/(1+x)))∣_0 ^1   =(3/2)ΞΆ(3)βˆ’(Ο€^2 /4)ln2βˆ’(1/3)ln^3 2βˆ’ln2Li_2 ((1/2))βˆ’Li_3 ((1/2))+Li_3 (1)  =ans...
Ο•=∫01lnxln(1βˆ’x)1+xdx=∫01lnxln(1βˆ’x2)1+xβˆ’βˆ«01lnxln(1+x)1+xdx=∫01lnxln(1βˆ’x2)1βˆ’x2dxβˆ’βˆ«01xlnxln(1βˆ’x2)1βˆ’x2dxβˆ’βˆ«01lnxln(1+x)1+xdx=βˆ‚βˆ‚aβˆ‚b∣a=0,b=βˆ’1∫01xa(1βˆ’x2)bdxβˆ’βˆ‚βˆ‚aβˆ‚b∣a=1,b=βˆ’1∫01xa(1βˆ’x2)bdxβˆ’{∫ln(1+x){ln(1+x)+lnx1+x}1+x}01=βˆ‚βˆ‚aβˆ‚b∣a=0,b=βˆ’112∫01u(aβˆ’1)/2(1βˆ’u)bduβˆ’βˆ‚βˆ‚aβˆ‚b∣a=1,b=βˆ’112∫01u(aβˆ’1)/2(1βˆ’u)bduβˆ’{∫ln2(1+x)1+xdx+∫ln(1βˆ’11+x)1+xln(1+x)dx}01=βˆ‚βˆ‚aβˆ‚b∣a=0,b=βˆ’112B(a+12,b+1)βˆ’βˆ‚βˆ‚aβˆ‚b∣a=1,b=βˆ’112B(a+12,b+1)βˆ’13ln32+βˆ‘βˆžn=1∫01(1+x)βˆ’nnβ‹…ln(1+x)1+xdx=32ΞΆ(3)βˆ’Ο€24ln2βˆ’13ln32+βˆ‘βˆžn=11n{∫01(1+x)βˆ’nβˆ’1ln(1+x)dx}=32ΞΆ(3)βˆ’Ο€24ln2βˆ’13ln32+βˆ‘βˆžn=11n{(1+x)βˆ’nβˆ’nln(1+x)βˆ’βˆ«(1+x)βˆ’nβˆ’1βˆ’ndx}01=32ΞΆ(3)βˆ’Ο€24ln2βˆ’13ln32βˆ’βˆ‘βˆžn=1(1+x)βˆ’nln(1+x)n2∣01+βˆ‘βˆžn=1(1+x)βˆ’nn3∣01=32ΞΆ(3)βˆ’Ο€24ln2βˆ’13ln32βˆ’Li2(11+x)ln(1+x)∣01βˆ’Li3(11+x)∣01=32ΞΆ(3)βˆ’Ο€24ln2βˆ’13ln32βˆ’ln2Li2(12)βˆ’Li3(12)+Li3(1)=ans…
Commented by mnjuly1970 last updated on 04/Apr/21
great ...thanks alot...
great…thanksalot…

Leave a Reply

Your email address will not be published. Required fields are marked *