advanced-calculus-prove-that-0-1-x-sin-2pix-dx-pi-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 138041 by mnjuly1970 last updated on 09/Apr/21 …….advanced………calculus……provethat:::ϕ=∫01ψ(x).sin(2πx)dx=−π2…✓ Answered by Dwaipayan Shikari last updated on 09/Apr/21 ∫01ψ(x)sin(2πx)dx=[sin(2πx)log(Γ(x))]01−2π∫01log(Γ(x))cos(2πx)=−π∫01log(π)cos(2πx)+π∫01log(sin(πx))cos(2πx)dx=∫0πlog(sin(u))cos(2u)du=[12log(sin(u))sin(2u)]0π−12∫0πsin(2u)cos(u)sin(u)du=−12∫0π1+cos(2u)du=−π2 Commented by mnjuly1970 last updated on 09/Apr/21 verynicemrpayan..thankyousomuch.. Answered by mnjuly1970 last updated on 09/Apr/21 ϕ=∫01ψ(x).sin(2πx)dxϕ=−∫01ψ(1−x).sin(2πx)dx2ϕ=∫01{(ψ(x)−ψ(1−x)}sin(2πx)dx=−π∫01cot(πx).sin(2πx)dx=−2π∫01cos(πx)sin(πx){sin(πx).cos(πx)}dx∴ϕ=−π∫011+cos(2πx)2dx=−π2…..✓ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Evaluate-x-3y-dx-from-0-1-to-2-5-along-the-curve-y-1-x-2-Next Next post: n-p-n-pn-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.