Menu Close

advanced-calculus-prove-that-0-1-x-sin-2pix-dx-pi-2-




Question Number 138041 by mnjuly1970 last updated on 09/Apr/21
           .......advanced ... ... ... calculus......    prove  that :::       𝛗=∫_0 ^( 1) ψ(x).sin(2πx)dx=−(π/2) ...✓
.advancedcalculusprovethat:::ϕ=01ψ(x).sin(2πx)dx=π2
Answered by Dwaipayan Shikari last updated on 09/Apr/21
∫_0 ^1 ψ(x)sin(2πx)dx  =[sin(2πx)log(Γ(x))]_0 ^1 −2π∫_0 ^1 log(Γ(x))cos(2πx)  =−π∫_0 ^1 log(π)cos(2πx)+π∫_0 ^1 log(sin(πx))cos(2πx)dx  =∫_0 ^π log(sin(u))cos(2u)du  =[(1/2)log(sin(u))sin(2u)]_0 ^π −(1/2)∫_0 ^π ((sin(2u)cos(u))/(sin(u)))du  =−(1/2)∫_0 ^π 1+cos(2u)du=−(π/2)
01ψ(x)sin(2πx)dx=[sin(2πx)log(Γ(x))]012π01log(Γ(x))cos(2πx)=π01log(π)cos(2πx)+π01log(sin(πx))cos(2πx)dx=0πlog(sin(u))cos(2u)du=[12log(sin(u))sin(2u)]0π120πsin(2u)cos(u)sin(u)du=120π1+cos(2u)du=π2
Commented by mnjuly1970 last updated on 09/Apr/21
verynice mr   payan.. thank you so much..
verynicemrpayan..thankyousomuch..
Answered by mnjuly1970 last updated on 09/Apr/21
    𝛗=∫_0 ^( 1) ψ(x).sin(2πx)dx      𝛗=−∫_0 ^( 1) ψ(1−x).sin(2πx)dx      2𝛗=∫_0 ^( 1) {(ψ(x)−ψ(1−x)}sin(2πx)dx           =−π∫_0 ^( 1) cot(πx).sin(2πx)dx          =−2π∫_0 ^( 1) ((cos(πx))/(sin(πx))){sin(πx).cos(πx)}dx        ∴ 𝛗=−π∫_0 ^( 1) ((1+cos(2πx))/2)dx               =−(π/2) .....✓
ϕ=01ψ(x).sin(2πx)dxϕ=01ψ(1x).sin(2πx)dx2ϕ=01{(ψ(x)ψ(1x)}sin(2πx)dx=π01cot(πx).sin(2πx)dx=2π01cos(πx)sin(πx){sin(πx).cos(πx)}dxϕ=π011+cos(2πx)2dx=π2..

Leave a Reply

Your email address will not be published. Required fields are marked *