Menu Close

advanced-calculus-prove-that-0-cos-2pix-2-cosh-2-pix-dx-1-4-




Question Number 141649 by mnjuly1970 last updated on 21/May/21
         .......advanced  calculus......      prove  that−::             φ:=∫_0 ^( ∞)  ((cos(2πx^2 ))/(cosh^2 (πx)))dx=(1/4)  ✓
$$\:\:\:\:\:\:\:\:\:…….{advanced}\:\:{calculus}…… \\ $$$$\:\:\:\:{prove}\:\:{that}−:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\phi:=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{cos}\left(\mathrm{2}\pi{x}^{\mathrm{2}} \right)}{{cosh}^{\mathrm{2}} \left(\pi{x}\right)}{dx}=\frac{\mathrm{1}}{\mathrm{4}}\:\:\checkmark \\ $$
Answered by ArielVyny last updated on 22/May/21
  φ=∫_0 ^∝ ((cos(2πx^2 )+1)/(cosh^2 (πx)))dx−∫_0 ^∝ (1/(cosh^2 (πx)))dx  φ=φ_1 −φ_2   φ_2 =∫_0 ^∝ (1/(cosh^2 (πx)))dx    πx=t  πdx=dt  φ_2 =(1/π)∫_0 ^∝ (1/(cosh^2 (t)))dt=(1/π)  φ_1 =∫_0 ^∝ ((cos(2πx^2 )+1)/(cosh^2 (πx)))dx  cos^2 (πx^2 )=((1+cos(2πx^2 ))/2)  φ_1 =∫_0 ^∝ ((2cos^2 (πx^2 ))/(cosh^2 (πx)))dx  φ_1 =2∫_0 ^∝ (((cos(πx^2 ))/(cosh(πx))))^2 dx  φ_1 =2∫_0 ^∝ ((((−1)^x^2  )/(cosh(πx))))^2 dx  φ_1 =2∫_0 ^∝ ((1/(cosh(πx))))^2 dx  φ_1 =2∫_0 ^∝ (1/(cosh^2 (πx))dx  πx=t.  πdx=dt  φ_1 =2(1/π)∫_0 ^∝ (1/(cosh^2 (t)))dt  φ_1 =(2/π)  φ=(1/π)  check in the answer because i do not have your result.
$$ \\ $$$$\phi=\int_{\mathrm{0}} ^{\propto} \frac{{cos}\left(\mathrm{2}\pi{x}^{\mathrm{2}} \right)+\mathrm{1}}{{cosh}^{\mathrm{2}} \left(\pi{x}\right)}{dx}−\int_{\mathrm{0}} ^{\propto} \frac{\mathrm{1}}{{cosh}^{\mathrm{2}} \left(\pi{x}\right)}{dx} \\ $$$$\phi=\phi_{\mathrm{1}} −\phi_{\mathrm{2}} \\ $$$$\phi_{\mathrm{2}} =\int_{\mathrm{0}} ^{\propto} \frac{\mathrm{1}}{{cosh}^{\mathrm{2}} \left(\pi{x}\right)}{dx}\:\: \\ $$$$\pi{x}={t}\:\:\pi{dx}={dt} \\ $$$$\phi_{\mathrm{2}} =\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\propto} \frac{\mathrm{1}}{{cosh}^{\mathrm{2}} \left({t}\right)}{dt}=\frac{\mathrm{1}}{\pi} \\ $$$$\phi_{\mathrm{1}} =\int_{\mathrm{0}} ^{\propto} \frac{{cos}\left(\mathrm{2}\pi{x}^{\mathrm{2}} \right)+\mathrm{1}}{{cosh}^{\mathrm{2}} \left(\pi{x}\right)}{dx} \\ $$$${cos}^{\mathrm{2}} \left(\pi{x}^{\mathrm{2}} \right)=\frac{\mathrm{1}+{cos}\left(\mathrm{2}\pi{x}^{\mathrm{2}} \right)}{\mathrm{2}} \\ $$$$\phi_{\mathrm{1}} =\int_{\mathrm{0}} ^{\propto} \frac{\mathrm{2}{cos}^{\mathrm{2}} \left(\pi{x}^{\mathrm{2}} \right)}{{cosh}^{\mathrm{2}} \left(\pi{x}\right)}{dx} \\ $$$$\phi_{\mathrm{1}} =\mathrm{2}\int_{\mathrm{0}} ^{\propto} \left(\frac{{cos}\left(\pi{x}^{\mathrm{2}} \right)}{{cosh}\left(\pi{x}\right)}\right)^{\mathrm{2}} {dx} \\ $$$$\phi_{\mathrm{1}} =\mathrm{2}\int_{\mathrm{0}} ^{\propto} \left(\frac{\left(−\mathrm{1}\right)^{{x}^{\mathrm{2}} } }{{cosh}\left(\pi{x}\right)}\right)^{\mathrm{2}} {dx} \\ $$$$\phi_{\mathrm{1}} =\mathrm{2}\int_{\mathrm{0}} ^{\propto} \left(\frac{\mathrm{1}}{{cosh}\left(\pi{x}\right)}\right)^{\mathrm{2}} {dx} \\ $$$$\phi_{\mathrm{1}} =\mathrm{2}\int_{\mathrm{0}} ^{\propto} \frac{\mathrm{1}}{{cosh}^{\mathrm{2}} \left(\pi{x}\right.}{dx} \\ $$$$\pi{x}={t}.\:\:\pi{dx}={dt} \\ $$$$\phi_{\mathrm{1}} =\mathrm{2}\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\propto} \frac{\mathrm{1}}{{cosh}^{\mathrm{2}} \left({t}\right)}{dt} \\ $$$$\phi_{\mathrm{1}} =\frac{\mathrm{2}}{\pi} \\ $$$$\phi=\frac{\mathrm{1}}{\pi} \\ $$$${check}\:{in}\:{the}\:{answer}\:{because}\:{i}\:{do}\:{not}\:{have}\:{your}\:{result}. \\ $$
Commented by mnjuly1970 last updated on 22/May/21
thank you so much   i will rechck...
$${thank}\:{you}\:{so}\:{much} \\ $$$$\:{i}\:{will}\:{rechck}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *