Menu Close

advanced-calculus-prove-that-0-cos-2pix-2-cosh-2-pix-dx-1-4-




Question Number 141649 by mnjuly1970 last updated on 21/May/21
         .......advanced  calculus......      prove  that−::             φ:=∫_0 ^( ∞)  ((cos(2πx^2 ))/(cosh^2 (πx)))dx=(1/4)  ✓
.advancedcalculusprovethat::ϕ:=0cos(2πx2)cosh2(πx)dx=14
Answered by ArielVyny last updated on 22/May/21
  φ=∫_0 ^∝ ((cos(2πx^2 )+1)/(cosh^2 (πx)))dx−∫_0 ^∝ (1/(cosh^2 (πx)))dx  φ=φ_1 −φ_2   φ_2 =∫_0 ^∝ (1/(cosh^2 (πx)))dx    πx=t  πdx=dt  φ_2 =(1/π)∫_0 ^∝ (1/(cosh^2 (t)))dt=(1/π)  φ_1 =∫_0 ^∝ ((cos(2πx^2 )+1)/(cosh^2 (πx)))dx  cos^2 (πx^2 )=((1+cos(2πx^2 ))/2)  φ_1 =∫_0 ^∝ ((2cos^2 (πx^2 ))/(cosh^2 (πx)))dx  φ_1 =2∫_0 ^∝ (((cos(πx^2 ))/(cosh(πx))))^2 dx  φ_1 =2∫_0 ^∝ ((((−1)^x^2  )/(cosh(πx))))^2 dx  φ_1 =2∫_0 ^∝ ((1/(cosh(πx))))^2 dx  φ_1 =2∫_0 ^∝ (1/(cosh^2 (πx))dx  πx=t.  πdx=dt  φ_1 =2(1/π)∫_0 ^∝ (1/(cosh^2 (t)))dt  φ_1 =(2/π)  φ=(1/π)  check in the answer because i do not have your result.
ϕ=0cos(2πx2)+1cosh2(πx)dx01cosh2(πx)dxϕ=ϕ1ϕ2ϕ2=01cosh2(πx)dxπx=tπdx=dtϕ2=1π01cosh2(t)dt=1πϕ1=0cos(2πx2)+1cosh2(πx)dxcos2(πx2)=1+cos(2πx2)2ϕ1=02cos2(πx2)cosh2(πx)dxϕ1=20(cos(πx2)cosh(πx))2dxϕ1=20((1)x2cosh(πx))2dxϕ1=20(1cosh(πx))2dxϕ1=201cosh2(πxdxπx=t.πdx=dtϕ1=21π01cosh2(t)dtϕ1=2πϕ=1πcheckintheanswerbecauseidonothaveyourresult.
Commented by mnjuly1970 last updated on 22/May/21
thank you so much   i will rechck...
thankyousomuchiwillrechck

Leave a Reply

Your email address will not be published. Required fields are marked *