advanced-calculus-prove-that-0-sin-x-4-ln-x-x-dx-32-note-0-sin-x-ln-x-x-dx-why- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 131529 by mnjuly1970 last updated on 05/Feb/21 …advanced∗∗∗∗∗∗∗∗∗∗calculus…provethat:::::ϕ=∫0∞sin(x4)ln(x)xdx=−πγ32note:∫0∞sin(x)ln(x)xdx=why???−πγ2ϕ=⟨x4=t⟩14∫0∞sin(t)ln(t14)t14∗1t34dt=116∫0∞sin(t)ln(t)tdt=note−πγ32(ϕ=−πγ32)notice::youwillprovethat::∫0∞sin(x)ln(x)xdx=−πγ2Hint::∫0∞sin(x)xμdx=???π2Γ(μ)sin(μπ2)…m.n.july.1970… Answered by Dwaipayan Shikari last updated on 06/Feb/21 ∫0∞sinxxμdx=1Γ(μ)∫0∞∫0∞tμ−1e−xtsinxdxdt=12iΓ(μ)∫0∞∫0∞tμ−1e−x(t−i)−tμ−1e−x(t+i)dxdt=12iΓ(μ)∫0∞tμ−1t−i−tμ−1t+idt=1Γ(μ)∫0∞tμ−1t2+1dt=12Γ(μ)∫0∞jμ2−1(1+u)dj=12Γ(μ).πsin(μπ2)I(μ)=π2Γ(μ)sin(μπ2)⇒I′(μ)=−π24Γ(μ)cosec(μπ2)cot(μπ2)−π2sin(μπ2).Γ′(μ)Γ2(μ)I′(μ)=∫0∞sinxxμlog(x)dxI′(1)=∫0∞sinxxlog(x)dx=−π2.Γ′(1)=−πγ2 Commented by mnjuly1970 last updated on 05/Feb/21 taydballahmrpayan.. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-1-3-1-1-4-2-1-5-3-1-1002-1000-x-1000-Next Next post: Factor-completely-2-4c-6-please-help-me- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.