Menu Close

advanced-calculus-prove-that-0-sin-x-4-ln-x-x-dx-32-note-0-sin-x-ln-x-x-dx-why-




Question Number 131529 by mnjuly1970 last updated on 05/Feb/21
                             ...advanced   ∗∗∗∗∗∗∗∗∗∗    calculus...     prove  that ::: ::      𝛗=∫_0 ^( ∞) ((sin(x^4 )ln(x))/x)dx=−((𝛑𝛄)/(32))      note : ∫_0 ^( ∞) ((sin(x)ln(x))/x)dx=^(why???)  ((−𝛑𝛄)/2)      𝛗=^(⟨x^4 =t⟩) (1/4)∫_0 ^( ∞) ((sin(t)ln(t^(1/4) ))/t^(1/4) ) ∗(1/t^(3/4) )dt                  =(1/(16))∫_0 ^(  ∞) ((sin(t)ln(t))/t)dt =^(note) ((−𝛑𝛄)/(32))                                (   𝛗=−((𝛑𝛄)/(32)) )                   notice:: you will prove that::∫_0 ^( ∞) ((sin(x)ln(x))/x)dx=((−𝛑𝛄)/2)          Hint::  ∫_0 ^( ∞) ((sin(x))/(x^( 𝛍)  ))dx=^(???) (𝛑/(2𝚪(𝛍)sin(((𝛍𝛑)/2))))                                ...  m.n.july.1970 ...
advancedcalculusprovethat:::::ϕ=0sin(x4)ln(x)xdx=πγ32note:0sin(x)ln(x)xdx=why???πγ2ϕ=x4=t140sin(t)ln(t14)t141t34dt=1160sin(t)ln(t)tdt=noteπγ32(ϕ=πγ32)notice::youwillprovethat::0sin(x)ln(x)xdx=πγ2Hint::0sin(x)xμdx=???π2Γ(μ)sin(μπ2)m.n.july.1970
Answered by Dwaipayan Shikari last updated on 06/Feb/21
∫_0 ^∞ ((sinx)/x^μ )dx=(1/(Γ(μ)))∫_0 ^∞ ∫_0 ^∞ t^(μ−1) e^(−xt) sinxdxdt  =(1/(2iΓ(μ)))∫_0 ^∞ ∫_0 ^∞ t^(μ−1) e^(−x(t−i)) −t^(μ−1) e^(−x(t+i)) dxdt  =(1/(2iΓ(μ)))∫_0 ^∞ (t^(μ−1) /(t−i))−(t^(μ−1) /(t+i))dt=(1/(Γ(μ)))∫_0 ^∞ (t^(μ−1) /(t^2 +1))dt  =(1/(2Γ(μ)))∫_0 ^∞ (j^((μ/2)−1) /((1+u)))dj=(1/(2Γ(μ))).(π/(sin(((μπ)/2))))  I(μ)=(π/(2Γ(μ)sin(((μπ)/2)))) ⇒I′(μ)=−(π^2 /(4Γ(μ)))cosec(((μπ)/2))cot(((μπ)/2))−(π/(2sin(((μπ)/2)))).((Γ′(μ))/(Γ^2 (μ)))  I′(μ)=∫_0 ^∞ ((sinx)/x^μ )log(x)dx  I′(1)=∫_0 ^∞ ((sinx)/x)log(x)dx=−(π/2).Γ′(1)=−((πγ)/2)
0sinxxμdx=1Γ(μ)00tμ1extsinxdxdt=12iΓ(μ)00tμ1ex(ti)tμ1ex(t+i)dxdt=12iΓ(μ)0tμ1titμ1t+idt=1Γ(μ)0tμ1t2+1dt=12Γ(μ)0jμ21(1+u)dj=12Γ(μ).πsin(μπ2)I(μ)=π2Γ(μ)sin(μπ2)I(μ)=π24Γ(μ)cosec(μπ2)cot(μπ2)π2sin(μπ2).Γ(μ)Γ2(μ)I(μ)=0sinxxμlog(x)dxI(1)=0sinxxlog(x)dx=π2.Γ(1)=πγ2
Commented by mnjuly1970 last updated on 05/Feb/21
taydballah mr payan..
taydballahmrpayan..

Leave a Reply

Your email address will not be published. Required fields are marked *