Question Number 131529 by mnjuly1970 last updated on 05/Feb/21
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{advanced}\:\:\:\ast\ast\ast\ast\ast\ast\ast\ast\ast\ast\:\:\:\:{calculus}… \\ $$$$\:\:\:{prove}\:\:{that}\::::\::: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}^{\mathrm{4}} \right){ln}\left({x}\right)}{{x}}{dx}=−\frac{\boldsymbol{\pi\gamma}}{\mathrm{32}} \\ $$$$\:\:\:\:{note}\::\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right){ln}\left({x}\right)}{{x}}{dx}\overset{{why}???} {=}\:\frac{−\boldsymbol{\pi\gamma}}{\mathrm{2}} \\ $$$$\:\:\:\:\boldsymbol{\phi}\overset{\langle{x}^{\mathrm{4}} ={t}\rangle} {=}\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({t}\right){ln}\left({t}^{\frac{\mathrm{1}}{\mathrm{4}}} \right)}{{t}^{\frac{\mathrm{1}}{\mathrm{4}}} }\:\ast\frac{\mathrm{1}}{{t}^{\frac{\mathrm{3}}{\mathrm{4}}} }{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{16}}\int_{\mathrm{0}} ^{\:\:\infty} \frac{{sin}\left({t}\right){ln}\left({t}\right)}{{t}}{dt}\:\overset{{note}} {=}\frac{−\boldsymbol{\pi\gamma}}{\mathrm{32}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:\:\boldsymbol{\phi}=−\frac{\boldsymbol{\pi\gamma}}{\mathrm{32}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{notice}::\:{you}\:{will}\:{prove}\:{that}::\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right){ln}\left({x}\right)}{{x}}{dx}=\frac{−\boldsymbol{\pi\gamma}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:{Hint}::\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right)}{{x}^{\:\boldsymbol{\mu}} \:}{dx}\overset{???} {=}\frac{\boldsymbol{\pi}}{\mathrm{2}\boldsymbol{\Gamma}\left(\boldsymbol{\mu}\right){sin}\left(\frac{\boldsymbol{\mu\pi}}{\mathrm{2}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\:{m}.{n}.{july}.\mathrm{1970}\:… \\ $$
Answered by Dwaipayan Shikari last updated on 06/Feb/21
$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}^{\mu} }{dx}=\frac{\mathrm{1}}{\Gamma\left(\mu\right)}\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {t}^{\mu−\mathrm{1}} {e}^{−{xt}} {sinxdxdt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}\Gamma\left(\mu\right)}\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {t}^{\mu−\mathrm{1}} {e}^{−{x}\left({t}−{i}\right)} −{t}^{\mu−\mathrm{1}} {e}^{−{x}\left({t}+{i}\right)} {dxdt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}\Gamma\left(\mu\right)}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mu−\mathrm{1}} }{{t}−{i}}−\frac{{t}^{\mu−\mathrm{1}} }{{t}+{i}}{dt}=\frac{\mathrm{1}}{\Gamma\left(\mu\right)}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mu−\mathrm{1}} }{{t}^{\mathrm{2}} +\mathrm{1}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\Gamma\left(\mu\right)}\int_{\mathrm{0}} ^{\infty} \frac{{j}^{\frac{\mu}{\mathrm{2}}−\mathrm{1}} }{\left(\mathrm{1}+{u}\right)}{dj}=\frac{\mathrm{1}}{\mathrm{2}\Gamma\left(\mu\right)}.\frac{\pi}{{sin}\left(\frac{\mu\pi}{\mathrm{2}}\right)} \\ $$$${I}\left(\mu\right)=\frac{\pi}{\mathrm{2}\Gamma\left(\mu\right){sin}\left(\frac{\mu\pi}{\mathrm{2}}\right)}\:\Rightarrow{I}'\left(\mu\right)=−\frac{\pi^{\mathrm{2}} }{\mathrm{4}\Gamma\left(\mu\right)}{cosec}\left(\frac{\mu\pi}{\mathrm{2}}\right){cot}\left(\frac{\mu\pi}{\mathrm{2}}\right)−\frac{\pi}{\mathrm{2}{sin}\left(\frac{\mu\pi}{\mathrm{2}}\right)}.\frac{\Gamma'\left(\mu\right)}{\Gamma^{\mathrm{2}} \left(\mu\right)} \\ $$$${I}'\left(\mu\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}^{\mu} }{log}\left({x}\right){dx} \\ $$$${I}'\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}{log}\left({x}\right){dx}=−\frac{\pi}{\mathrm{2}}.\Gamma'\left(\mathrm{1}\right)=−\frac{\pi\gamma}{\mathrm{2}} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 05/Feb/21
$${taydballah}\:{mr}\:{payan}.. \\ $$