Menu Close

advanced-calculus-prove-that-0-x-2-cosh-2-x-2-dx-2-2-4-pi-1-2-




Question Number 140715 by mnjuly1970 last updated on 11/May/21
                       ......advanced  calculus......        prove that:            𝛗:=∫_0 ^( ∞) (x^2 /(cosh^2 (x^2 )))dx=^? (((√2) βˆ’2)/4) (βˆšΟ€) ΞΆ ( (1/2) )              ..............
$$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:……{advanced}\:\:{calculus}…… \\ $$$$\:\:\:\:\:\:{prove}\:{that}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{\mathrm{2}} }{{cosh}^{\mathrm{2}} \left({x}^{\mathrm{2}} \right)}{dx}\overset{?} {=}\frac{\sqrt{\mathrm{2}}\:βˆ’\mathrm{2}}{\mathrm{4}}\:\sqrt{\pi}\:\zeta\:\left(\:\frac{\mathrm{1}}{\mathrm{2}}\:\right)\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:………….. \\ $$
Answered by Dwaipayan Shikari last updated on 11/May/21
∫_0 ^∞ (x^2 /(cosh^2 (x^2 )))dx=(1/2)∫_0 ^∞ ((√u)/(cosh^2 (u)))du  =∫_0 ^∞ ((√u)/(1+cosh(2u)))=2∫_0 ^∞ ((e^(βˆ’2u) (√u))/((1+e^(βˆ’2u) )^2 ))du  Ξ£_(n=1) ^∞ (βˆ’1)^(n+1) e^(βˆ’2nu) =(1/(1+e^(βˆ’2u) ))β‡’Ξ£_(n=1) ^∞ (βˆ’1)^(n+1) ne^(βˆ’2nu) =((βˆ’e^(2u) )/((1+e^(βˆ’2u) )^2 ))    =βˆ’2∫_0 ^∞ Ξ£_(n=1) ^∞ (βˆ’1)^(n+1) (√u) ne^(βˆ’2nu) du=2Ξ£_(n=1) ^∞ (βˆ’1)^n n∫_0 ^∞ (√u) e^(βˆ’2nu) du  2nu=t  β‡’Ξ£_(n=1) ^∞ (βˆ’1)^n ∫_0 ^∞ ((√t)/( (√(2n))))e^(βˆ’t) dt=βˆ’Ξ£_(n=1) ^∞ ((βˆšΟ€)/( (√2)(√n)))(βˆ’1)^(n+1)   =βˆ’(√(Ο€/2)) ΞΆ((1/2))(1βˆ’(1/2^((1/2)βˆ’1) ))=(√(Ο€/2)) ((√2)βˆ’1)ΞΆ((1/2))
$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} }{{cosh}^{\mathrm{2}} \left({x}^{\mathrm{2}} \right)}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\sqrt{{u}}}{{cosh}^{\mathrm{2}} \left({u}\right)}{du} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\sqrt{{u}}}{\mathrm{1}+{cosh}\left(\mathrm{2}{u}\right)}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{e}^{βˆ’\mathrm{2}{u}} \sqrt{{u}}}{\left(\mathrm{1}+{e}^{βˆ’\mathrm{2}{u}} \right)^{\mathrm{2}} }{du} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(βˆ’\mathrm{1}\right)^{{n}+\mathrm{1}} {e}^{βˆ’\mathrm{2}{nu}} =\frac{\mathrm{1}}{\mathrm{1}+{e}^{βˆ’\mathrm{2}{u}} }\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(βˆ’\mathrm{1}\right)^{{n}+\mathrm{1}} {ne}^{βˆ’\mathrm{2}{nu}} =\frac{βˆ’{e}^{\mathrm{2}{u}} }{\left(\mathrm{1}+{e}^{βˆ’\mathrm{2}{u}} \right)^{\mathrm{2}} }\:\: \\ $$$$=βˆ’\mathrm{2}\int_{\mathrm{0}} ^{\infty} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(βˆ’\mathrm{1}\right)^{{n}+\mathrm{1}} \sqrt{{u}}\:{ne}^{βˆ’\mathrm{2}{nu}} {du}=\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(βˆ’\mathrm{1}\right)^{{n}} {n}\int_{\mathrm{0}} ^{\infty} \sqrt{{u}}\:{e}^{βˆ’\mathrm{2}{nu}} {du} \\ $$$$\mathrm{2}{nu}={t}\:\:\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(βˆ’\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\infty} \frac{\sqrt{{t}}}{\:\sqrt{\mathrm{2}{n}}}{e}^{βˆ’{t}} {dt}=βˆ’\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\sqrt{\pi}}{\:\sqrt{\mathrm{2}}\sqrt{{n}}}\left(βˆ’\mathrm{1}\right)^{{n}+\mathrm{1}} \\ $$$$=βˆ’\sqrt{\frac{\pi}{\mathrm{2}}}\:\zeta\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{1}βˆ’\frac{\mathrm{1}}{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}βˆ’\mathrm{1}} }\right)=\sqrt{\frac{\pi}{\mathrm{2}}}\:\left(\sqrt{\mathrm{2}}βˆ’\mathrm{1}\right)\zeta\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 12/May/21
grateful ....
$${grateful}\:…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *