Menu Close

advanced-calculus-prove-that-0-x-2-cosh-2-x-2-dx-2-2-4-pi-1-2-




Question Number 140715 by mnjuly1970 last updated on 11/May/21
                       ......advanced  calculus......        prove that:            𝛗:=∫_0 ^( ∞) (x^2 /(cosh^2 (x^2 )))dx=^? (((√2) βˆ’2)/4) (βˆšΟ€) ΞΆ ( (1/2) )              ..............
……advancedcalculus……provethat:Ο•:=∫0∞x2cosh2(x2)dx=?2βˆ’24π΢(12)…………..
Answered by Dwaipayan Shikari last updated on 11/May/21
∫_0 ^∞ (x^2 /(cosh^2 (x^2 )))dx=(1/2)∫_0 ^∞ ((√u)/(cosh^2 (u)))du  =∫_0 ^∞ ((√u)/(1+cosh(2u)))=2∫_0 ^∞ ((e^(βˆ’2u) (√u))/((1+e^(βˆ’2u) )^2 ))du  Ξ£_(n=1) ^∞ (βˆ’1)^(n+1) e^(βˆ’2nu) =(1/(1+e^(βˆ’2u) ))β‡’Ξ£_(n=1) ^∞ (βˆ’1)^(n+1) ne^(βˆ’2nu) =((βˆ’e^(2u) )/((1+e^(βˆ’2u) )^2 ))    =βˆ’2∫_0 ^∞ Ξ£_(n=1) ^∞ (βˆ’1)^(n+1) (√u) ne^(βˆ’2nu) du=2Ξ£_(n=1) ^∞ (βˆ’1)^n n∫_0 ^∞ (√u) e^(βˆ’2nu) du  2nu=t  β‡’Ξ£_(n=1) ^∞ (βˆ’1)^n ∫_0 ^∞ ((√t)/( (√(2n))))e^(βˆ’t) dt=βˆ’Ξ£_(n=1) ^∞ ((βˆšΟ€)/( (√2)(√n)))(βˆ’1)^(n+1)   =βˆ’(√(Ο€/2)) ΞΆ((1/2))(1βˆ’(1/2^((1/2)βˆ’1) ))=(√(Ο€/2)) ((√2)βˆ’1)ΞΆ((1/2))
∫0∞x2cosh2(x2)dx=12∫0∞ucosh2(u)du=∫0∞u1+cosh(2u)=2∫0∞eβˆ’2uu(1+eβˆ’2u)2duβˆ‘βˆžn=1(βˆ’1)n+1eβˆ’2nu=11+eβˆ’2uβ‡’βˆ‘βˆžn=1(βˆ’1)n+1neβˆ’2nu=βˆ’e2u(1+eβˆ’2u)2=βˆ’2∫0βˆžβˆ‘βˆžn=1(βˆ’1)n+1uneβˆ’2nudu=2βˆ‘βˆžn=1(βˆ’1)nn∫0∞ueβˆ’2nudu2nu=tβ‡’βˆ‘βˆžn=1(βˆ’1)n∫0∞t2neβˆ’tdt=βˆ’βˆ‘βˆžn=1Ο€2n(βˆ’1)n+1=βˆ’Ο€2ΞΆ(12)(1βˆ’1212βˆ’1)=Ο€2(2βˆ’1)ΞΆ(12)
Commented by mnjuly1970 last updated on 12/May/21
grateful ....
grateful….

Leave a Reply

Your email address will not be published. Required fields are marked *