Advanced-Calculus-prove-that-determinant-i-n-0-1-x-2-2n-1-2-cos-pix-2-ii-n-0-1-x-2-2n-1-2-cosh Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 135610 by mnjuly1970 last updated on 14/Mar/21 ….Advanced……Calculus….provethat:i::∏∞n=0(1−x2(2n+1)2)=cos(πx2)✓ii::∏∞n=0(1+x2(2n+1)2)=cosh(πx2)✓✓…………. Answered by Dwaipayan Shikari last updated on 14/Mar/21 cosx=C(π2−x)(π2+x)(3π2−x)(3π2+x)…cos(x)haszerosat={π2,−π2,3π2,−3π2….}x=0⇒1=Cπ2.π2.3π2.3π2…⇒C=2π.2π.23π.23π…cosx=(1−2xπ)(1+2xπ)(1−2x3π)(1+2x3π)….cosx=∏∞n=0(1−2x2π2(2n+1)2)cos(π2x)=∏∞n=0(1−x2(2n+1)2)cosh(π2x)=∏∞n=0(1+x2(2n+1)2)x→xi Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: sin-pi-7-cos-pi-14-tan-3pi-14-2cos-pi-7-1-Next Next post: Question-70075 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.