Question Number 135610 by mnjuly1970 last updated on 14/Mar/21
$$\:\:\:\:\:\:\:\:\:\:….\:\mathscr{A}{dvanced}\:\:……\:\:\mathscr{C}{alculus}…. \\ $$$$\:\:\:\:\:\:\:\:\:{prove}\:{that}\:: \\ $$$$\:\:\:\begin{array}{|c|c|}{{i}\:::\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\right)\:={cos}\left(\frac{\pi{x}}{\mathrm{2}}\right)\:\:\:\:\checkmark\:\:}\\{{ii}\:::\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\right)=\:{cosh}\left(\frac{\pi{x}}{\mathrm{2}}\right)\:\checkmark\checkmark}\\\hline\end{array}\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…………. \\ $$
Answered by Dwaipayan Shikari last updated on 14/Mar/21
$${cosx}={C}\left(\frac{\pi}{\mathrm{2}}−{x}\right)\left(\frac{\pi}{\mathrm{2}}+{x}\right)\left(\frac{\mathrm{3}\pi}{\mathrm{2}}−{x}\right)\left(\frac{\mathrm{3}\pi}{\mathrm{2}}+{x}\right)… \\ $$$${cos}\left({x}\right)\:{has}\:{zeros}\:{at}\:=\left\{\frac{\pi}{\mathrm{2}},−\frac{\pi}{\mathrm{2}},\frac{\mathrm{3}\pi}{\mathrm{2}},−\frac{\mathrm{3}\pi}{\mathrm{2}}….\right\} \\ $$$${x}=\mathrm{0}\:\:\:\Rightarrow\mathrm{1}={C}\frac{\pi}{\mathrm{2}}.\frac{\pi}{\mathrm{2}}.\frac{\mathrm{3}\pi}{\mathrm{2}}.\frac{\mathrm{3}\pi}{\mathrm{2}}…\Rightarrow{C}=\frac{\mathrm{2}}{\pi}.\frac{\mathrm{2}}{\pi}.\frac{\mathrm{2}}{\mathrm{3}\pi}.\frac{\mathrm{2}}{\mathrm{3}\pi}… \\ $$$${cosx}=\left(\mathrm{1}−\frac{\mathrm{2}{x}}{\pi}\right)\left(\mathrm{1}+\frac{\mathrm{2}{x}}{\pi}\right)\left(\mathrm{1}−\frac{\mathrm{2}{x}}{\mathrm{3}\pi}\right)\left(\mathrm{1}+\frac{\mathrm{2}{x}}{\mathrm{3}\pi}\right)…. \\ $$$${cosx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{2}{x}^{\mathrm{2}} }{\pi^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\right) \\ $$$${cos}\left(\frac{\pi}{\mathrm{2}}{x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\right)\:\:\:\:\:\: \\ $$$${cosh}\left(\frac{\pi}{\mathrm{2}}{x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\right)\:\:\:{x}\rightarrow{xi} \\ $$$$ \\ $$