Menu Close

Advanced-Calculus-prove-that-determinant-i-n-0-1-x-2-2n-1-2-cos-pix-2-ii-n-0-1-x-2-2n-1-2-cosh




Question Number 135610 by mnjuly1970 last updated on 14/Mar/21
          .... Advanced  ......  Calculus....           prove that :      determinant (((i ::   Π_(n=0) ^∞ (1−(x^2 /((2n+1)^2 ))) =cos(((πx)/2))    ✓  )),((ii ::  Π_(n=0) ^∞ (1+(x^2 /((2n+1)^2 )))= cosh(((πx)/2)) ✓✓)))                       .............
.AdvancedCalculus.provethat:i::n=0(1x2(2n+1)2)=cos(πx2)ii::n=0(1+x2(2n+1)2)=cosh(πx2).
Answered by Dwaipayan Shikari last updated on 14/Mar/21
cosx=C((π/2)−x)((π/2)+x)(((3π)/2)−x)(((3π)/2)+x)...  cos(x) has zeros at ={(π/2),−(π/2),((3π)/2),−((3π)/2)....}  x=0   ⇒1=C(π/2).(π/2).((3π)/2).((3π)/2)...⇒C=(2/π).(2/π).(2/(3π)).(2/(3π))...  cosx=(1−((2x)/π))(1+((2x)/π))(1−((2x)/(3π)))(1+((2x)/(3π)))....  cosx=Π_(n=0) ^∞ (1−((2x^2 )/(π^2 (2n+1)^2 )))  cos((π/2)x)=Π_(n=0) ^∞ (1−(x^2 /((2n+1)^2 )))        cosh((π/2)x)=Π_(n=0) ^∞ (1+(x^2 /((2n+1)^2 )))   x→xi
cosx=C(π2x)(π2+x)(3π2x)(3π2+x)cos(x)haszerosat={π2,π2,3π2,3π2.}x=01=Cπ2.π2.3π2.3π2C=2π.2π.23π.23πcosx=(12xπ)(1+2xπ)(12x3π)(1+2x3π).cosx=n=0(12x2π2(2n+1)2)cos(π2x)=n=0(1x2(2n+1)2)cosh(π2x)=n=0(1+x2(2n+1)2)xxi

Leave a Reply

Your email address will not be published. Required fields are marked *