advanced-calculus-prove-that-F-1-0-e-x-e-1-x-1-x-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 141417 by mnjuly1970 last updated on 18/May/21 ……..advanced………calculus…….provethat::F:=∫−10ex+e1x−1xdx=??γ Answered by mnjuly1970 last updated on 27/May/21 :=∫−10e1xxdx=1x=−y∫1∞−ye−ydyy2:=−∫1∞e−yydy=−∫1∞e−yln(y)−[ln(y)e−y]1∞:=−∫1∞e−yln(y)dy⇒−∫0∞e−yln(y)dy+∫01e−yln(y)dy∫−10e1xxdx:=γ+∫01e−xln(x)dx(★):=γ+∫01ln(x)d(1−e−x):=γ+[ln(x)(1−e−x)]01−∫01(1−e−xx)dx:=γ−∫011−e−xxdx=γ+∫0−11−ex−xdx:=γ+∫−101−exxdx(★)::∫−10e1x+ex−1x=γ…..✓……..F:=∫−10ex+e1x−1xdx=γ…… Answered by mindispower last updated on 19/May/21 x=1t⇒F=∫−10ex−1xdx+∫−10e1xxdx=A+BA=[ex−1]ln(−x)]−10−∫−10exln(−x)=−∫−10exln(−x)dx=∫10e−tln(t)dtB=[ln(−x)e1x]−10−∫−10e1xx2ln(−x)dx=∫−10−e1xx2ln(−x),t=−1x⇒B=−∫1∞e−tln(t)F=A+B=−∫0∞ln(t)e−tdt=∂x(−∫0∞e−ttx−1dt)∣x=1=∂x.−Γ(x+1)∣x=0=−Γ′(1)=−Γ(1)Ψ(1)=−1.−γ=γ⇒∫−10ex+e1x−1xdx=γ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: A-1-2-3-n-2-B-15-16-n-A-B-42-n-Next Next post: show-that-3-3h-g-and-use-the-similar-expression-to-to-deduce-that-3-3h-g- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.