Menu Close

advanced-calculus-prove-that-F-1-0-e-x-e-1-x-1-x-dx-




Question Number 141417 by mnjuly1970 last updated on 18/May/21
          ........ advanced ... ... ... calculus.......      prove that::       F:= ∫_(−1) ^( 0) ((e^x +e^(1/x) −1)/x) dx=^(??) γ
..advancedcalculus.provethat::F:=10ex+e1x1xdx=??γ
Answered by mnjuly1970 last updated on 27/May/21
    :=∫_(−1 ) ^( 0) (e^(1/x) /x)dx=^((1/x)=−y) ∫_1 ^( ∞) −ye^(−y) (dy/y^2 )        := −∫_1 ^( ∞) (e^(−y) /y)dy=−∫_1 ^( ∞) e^(−y) ln(y)−[ln(y)e^(−y) ]_1 ^∞        :=−∫_1 ^( ∞) e^(−y) ln(y)dy⇒−∫_0 ^( ∞) e^(−y) ln(y)dy+∫_0 ^( 1) e^(−y) ln(y)dy    ∫_(−1) ^( 0) (e^(1/x) /x)dx:= γ+∫_0 ^( 1) e^(−x) ln(x)dx (★)              := γ +∫_0 ^( 1) ln(x)d(1−e^(−x) )              := γ+[ln(x)(1−e^(−x) )]_0 ^( 1) −∫_0 ^( 1) (((1−e^(−x) )/x))dx             := γ −∫_0 ^( 1) ((1−e^(−x) )/x)dx=γ+∫_0 ^( −1) ((1−e^x )/(−x))dx             :=γ +∫_(−1) ^( 0) ((1−e^x )/x) dx        (★) ::  ∫_(−1) ^( 0) ((e^(1/x) +e^x −1)/x) =γ .....✓                          ........   F := ∫_(−1) ^( 0) ((e^x +e^(1/x) −1)/x) dx = γ ......
:=10e1xxdx=1x=y1yeydyy2:=1eyydy=1eyln(y)[ln(y)ey]1:=1eyln(y)dy0eyln(y)dy+01eyln(y)dy10e1xxdx:=γ+01exln(x)dx():=γ+01ln(x)d(1ex):=γ+[ln(x)(1ex)]0101(1exx)dx:=γ011exxdx=γ+011exxdx:=γ+101exxdx()::10e1x+ex1x=γ....F:=10ex+e1x1xdx=γ
Answered by mindispower last updated on 19/May/21
x=(1/t)⇒F=∫_(−1) ^0 ((e^x −1)/x)dx+∫_(−1) ^0 (e^(1/x) /x)dx=A+B  A=[e^x −1]ln(−x)]_(−1) ^0 −∫_(−1) ^0 e^x ln(−x)  =−∫_(−1) ^0 e^x ln(−x)dx=∫_1 ^0 e^(−t) ln(t)dt  B=[ln(−x)e^(1/x) ]_(−1) ^0 −∫_(−1) ^0 (e^(1/x) /x^2 )ln(−x)dx  =∫_(−1) ^0 −(e^(1/x) /x^2 )ln(−x),t=−(1/x)⇒  B=−∫_1 ^∞ e^(−t) ln(t)  F=A+B=−∫_0 ^∞ ln(t)e^(−t) dt=∂_x (−∫_0 ^∞ e^(−t) t^(x−1) dt)∣_(x=1)   =∂_x .−Γ(x+1)∣_(x=0) =−Γ′(1)=−Γ(1)Ψ(1)=−1.−γ=γ  ⇒∫_(−1) ^0 ((e^x +e^(1/x) −1)/x)dx=γ
x=1tF=10ex1xdx+10e1xxdx=A+BA=[ex1]ln(x)]1010exln(x)=10exln(x)dx=10etln(t)dtB=[ln(x)e1x]1010e1xx2ln(x)dx=10e1xx2ln(x),t=1xB=1etln(t)F=A+B=0ln(t)etdt=x(0ettx1dt)x=1=x.Γ(x+1)x=0=Γ(1)=Γ(1)Ψ(1)=1.γ=γ10ex+e1x1xdx=γ

Leave a Reply

Your email address will not be published. Required fields are marked *