Menu Close

advanced-calculus-prove-that-i-0-1-2-e-2x-1-1-e-x-1-x-dx-log-1-pi-ii-0-1-2-1-1-e-x-e-2x-x-dx-log-pi-2




Question Number 139524 by mnjuly1970 last updated on 28/Apr/21
            ......advanced  calculus.....           prove  that:   i::๐›—=โˆซ_0 ^( โˆž) ((1/2)e^(โˆ’2x) โˆ’(1/(1+e^x )))(1/x) dx=log((1/( (โˆšฯ€))) )   ii::โˆซ_0 ^( โˆž) ((1/2)โˆ’(1/(1+e^(โˆ’x) )))(e^(โˆ’2x) /x)dx=log(((โˆšฯ€)/2))
โ€ฆโ€ฆadvancedcalculusโ€ฆ..provethat:i::ฯ•=โˆซ0โˆž(12eโˆ’2xโˆ’11+ex)1xdx=log(1ฯ€)ii::โˆซ0โˆž(12โˆ’11+eโˆ’x)eโˆ’2xxdx=log(ฯ€2)
Answered by mindispower last updated on 30/Apr/21
i..ii are similar in way this can solve by  let โˆ…=โˆซ_0 ^โˆž ((e^(โˆ’2x) /2)โˆ’(e^(โˆ’x) /(1+e^(โˆ’x) ))).(dx/x)  e^(โˆ’x) =tโ‡’ฯ†=โˆซ_0 ^1 ((1/(1+t))โˆ’(t/2))(dt/(ln(t)))  let f(z)=โˆซ_0 ^1 ((1/(1+t))โˆ’(t/2))(t^z /(ln(t)))dt  fโ€ฒ(z)=โˆซ_0 ^1 ((t^z /(1+t))โˆ’(t^(1+z) /2))dt=โˆ’(1/(2(2+z)))+โˆซ_0 ^1 ((t^z โˆ’t^(1+z) )/(1โˆ’t^2 ))dt  t^2 โ†’t in 2nd โ‡”fโ€ฒ(z)=โˆ’(1/(2(2+z)))+(1/2)(โˆ’ฮณ+โˆซ_0 ^1 ((1โˆ’t^(z/2) )/(1โˆ’t)).dt)  โˆ’(1/2)(โˆ’ฮณ+โˆซ_0 ^1 ((1โˆ’t^((zโˆ’1)/2) )/(1โˆ’t))dt)  ฮจ(x+1)=โˆ’ฮณ+โˆซ_0 ^1 ((1โˆ’t^x )/(1โˆ’t))dtโ‡’  fโ€ฒ(z)=โˆ’(1/(2(2+z)))+(1/2)(ฮจ((z/2)+1)โˆ’ฮจ(((z+1)/2)))  f(z)=โˆ’(1/2)ln(2+z)+log(((ฮ“((z/2)+1))/(ฮ“(((z+1)/2)))))+c  ฮ“(z+a)โˆผ(โˆš(2ฯ€)).z^(z+aโˆ’(1/2)) e^(โˆ’z)   ((ฮ“((z/2)+1))/(ฮ“(((z+1)/2))))โˆผ((((z/2))^((z/2)+(1/2)) )/((z)^(z/2) ))  f(z)โˆผln((1/( (โˆš(2+z)))).(โˆš(z/2)))+cโ‡’lim_(zโ†’โˆž) f(z)=ln((1/( (โˆš2))))+c  back to f(z)=โˆซ_0 ^1 ((1/(1+t))โˆ’(t/2))(t^z /(ln(t)))dtโ‡’lim_(zโ†’โˆž) f(z)=0  โ‡’c=ln((โˆš2))โ‡”f(z)=โˆซ_0 ^1 ((1/(1+t))โˆ’(t/2)).(t^z /(ln(t)))=ln((1/( (โˆš(2+z)))))  +log(((ฮ“((z/2)+1))/(ฮ“(((z+1)/2)))))+ln((โˆš2))  f(0)=ฯ†=ln((1/( (โˆš2))))+ln((โˆš2))+log(((ฮ“(1))/(ฮ“((1/2)))))=log((1/( (โˆšฯ€))))  โ‡”ฯ†=โˆซ_0 ^โˆž ((e^(โˆ’2x) /2)โˆ’(e^(โˆ’x) /(1+e^(โˆ’x) ))).(dx/x)=ln((1/( (โˆšฯ€))))
i..iiaresimilarinwaythiscansolvebyletโˆ…=โˆซ0โˆž(eโˆ’2x2โˆ’eโˆ’x1+eโˆ’x).dxxeโˆ’x=tโ‡’ฯ•=โˆซ01(11+tโˆ’t2)dtln(t)letf(z)=โˆซ01(11+tโˆ’t2)tzln(t)dtfโ€ฒ(z)=โˆซ01(tz1+tโˆ’t1+z2)dt=โˆ’12(2+z)+โˆซ01tzโˆ’t1+z1โˆ’t2dtt2โ†’tin2ndโ‡”fโ€ฒ(z)=โˆ’12(2+z)+12(โˆ’ฮณ+โˆซ011โˆ’tz21โˆ’t.dt)โˆ’12(โˆ’ฮณ+โˆซ011โˆ’tzโˆ’121โˆ’tdt)ฮจ(x+1)=โˆ’ฮณ+โˆซ011โˆ’tx1โˆ’tdtโ‡’fโ€ฒ(z)=โˆ’12(2+z)+12(ฮจ(z2+1)โˆ’ฮจ(z+12))f(z)=โˆ’12ln(2+z)+log(ฮ“(z2+1)ฮ“(z+12))+cฮ“(z+a)โˆผ2ฯ€.zz+aโˆ’12eโˆ’zฮ“(z2+1)ฮ“(z+12)โˆผ(z2)z2+12(z)z2f(z)โˆผln(12+z.z2)+cโ‡’limzโ†’โˆžf(z)=ln(12)+cbacktof(z)=โˆซ01(11+tโˆ’t2)tzln(t)dtโ‡’limzโ†’โˆžf(z)=0โ‡’c=ln(2)โ‡”f(z)=โˆซ01(11+tโˆ’t2).tzln(t)=ln(12+z)+log(ฮ“(z2+1)ฮ“(z+12))+ln(2)f(0)=ฯ•=ln(12)+ln(2)+log(ฮ“(1)ฮ“(12))=log(1ฯ€)โ‡”ฯ•=โˆซ0โˆž(eโˆ’2x2โˆ’eโˆ’x1+eโˆ’x).dxx=ln(1ฯ€)

Leave a Reply

Your email address will not be published. Required fields are marked *