Question Number 139524 by mnjuly1970 last updated on 28/Apr/21
$$\:\:\:\:\:\:\:\:\:\:\:\:……{advanced}\:\:{calculus}….. \\ $$$$\:\:\:\:\:\:\:\:\:{prove}\:\:{that}: \\ $$$$\:{i}::\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{\mathrm{1}}{\mathrm{2}}{e}^{β\mathrm{2}{x}} β\frac{\mathrm{1}}{\mathrm{1}+{e}^{{x}} }\right)\frac{\mathrm{1}}{{x}}\:{dx}={log}\left(\frac{\mathrm{1}}{\:\sqrt{\pi}}\:\right) \\ $$$$\:{ii}::\int_{\mathrm{0}} ^{\:\infty} \left(\frac{\mathrm{1}}{\mathrm{2}}β\frac{\mathrm{1}}{\mathrm{1}+{e}^{β{x}} }\right)\frac{{e}^{β\mathrm{2}{x}} }{{x}}{dx}={log}\left(\frac{\sqrt{\pi}}{\mathrm{2}}\right) \\ $$
Answered by mindispower last updated on 30/Apr/21
$${i}..{ii}\:{are}\:{similar}\:{in}\:{way}\:{this}\:{can}\:{solve}\:{by} \\ $$$${let}\:\emptyset=\int_{\mathrm{0}} ^{\infty} \left(\frac{{e}^{β\mathrm{2}{x}} }{\mathrm{2}}β\frac{{e}^{β{x}} }{\mathrm{1}+{e}^{β{x}} }\right).\frac{{dx}}{{x}} \\ $$$${e}^{β{x}} ={t}\Rightarrow\phi=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+{t}}β\frac{{t}}{\mathrm{2}}\right)\frac{{dt}}{{ln}\left({t}\right)} \\ $$$${let}\:{f}\left({z}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+{t}}β\frac{{t}}{\mathrm{2}}\right)\frac{{t}^{{z}} }{{ln}\left({t}\right)}{dt} \\ $$$${f}'\left({z}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{{t}^{{z}} }{\mathrm{1}+{t}}β\frac{{t}^{\mathrm{1}+{z}} }{\mathrm{2}}\right){dt}=β\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}+{z}\right)}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{{z}} β{t}^{\mathrm{1}+{z}} }{\mathrm{1}β{t}^{\mathrm{2}} }{dt} \\ $$$${t}^{\mathrm{2}} \rightarrow{t}\:{in}\:\mathrm{2}{nd}\:\Leftrightarrow{f}'\left({z}\right)=β\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}+{z}\right)}+\frac{\mathrm{1}}{\mathrm{2}}\left(β\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}β{t}^{\frac{{z}}{\mathrm{2}}} }{\mathrm{1}β{t}}.{dt}\right) \\ $$$$β\frac{\mathrm{1}}{\mathrm{2}}\left(β\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}β{t}^{\frac{{z}β\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}β{t}}{dt}\right) \\ $$$$\Psi\left({x}+\mathrm{1}\right)=β\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}β{t}^{{x}} }{\mathrm{1}β{t}}{dt}\Rightarrow \\ $$$${f}'\left({z}\right)=β\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}+{z}\right)}+\frac{\mathrm{1}}{\mathrm{2}}\left(\Psi\left(\frac{{z}}{\mathrm{2}}+\mathrm{1}\right)β\Psi\left(\frac{{z}+\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$${f}\left({z}\right)=β\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}+{z}\right)+{log}\left(\frac{\Gamma\left(\frac{{z}}{\mathrm{2}}+\mathrm{1}\right)}{\Gamma\left(\frac{{z}+\mathrm{1}}{\mathrm{2}}\right)}\right)+{c} \\ $$$$\Gamma\left({z}+{a}\right)\sim\sqrt{\mathrm{2}\pi}.{z}^{{z}+{a}β\frac{\mathrm{1}}{\mathrm{2}}} {e}^{β{z}} \\ $$$$\frac{\Gamma\left(\frac{{z}}{\mathrm{2}}+\mathrm{1}\right)}{\Gamma\left(\frac{{z}+\mathrm{1}}{\mathrm{2}}\right)}\sim\frac{\left(\frac{{z}}{\mathrm{2}}\right)^{\frac{{z}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}} }{\left({z}\right)^{\frac{{z}}{\mathrm{2}}} } \\ $$$${f}\left({z}\right)\sim{ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+{z}}}.\sqrt{\frac{{z}}{\mathrm{2}}}\right)+{c}\Rightarrow\underset{{z}\rightarrow\infty} {\mathrm{lim}}{f}\left({z}\right)={ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)+{c} \\ $$$${back}\:{to}\:{f}\left({z}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+{t}}β\frac{{t}}{\mathrm{2}}\right)\frac{{t}^{{z}} }{{ln}\left({t}\right)}{dt}\Rightarrow\underset{{z}\rightarrow\infty} {\mathrm{lim}}{f}\left({z}\right)=\mathrm{0} \\ $$$$\Rightarrow{c}={ln}\left(\sqrt{\mathrm{2}}\right)\Leftrightarrow{f}\left({z}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}+{t}}β\frac{{t}}{\mathrm{2}}\right).\frac{{t}^{{z}} }{{ln}\left({t}\right)}={ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+{z}}}\right) \\ $$$$+{log}\left(\frac{\Gamma\left(\frac{{z}}{\mathrm{2}}+\mathrm{1}\right)}{\Gamma\left(\frac{{z}+\mathrm{1}}{\mathrm{2}}\right)}\right)+{ln}\left(\sqrt{\mathrm{2}}\right) \\ $$$${f}\left(\mathrm{0}\right)=\phi={ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)+{ln}\left(\sqrt{\mathrm{2}}\right)+{log}\left(\frac{\Gamma\left(\mathrm{1}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}\right)={log}\left(\frac{\mathrm{1}}{\:\sqrt{\pi}}\right) \\ $$$$\Leftrightarrow\phi=\int_{\mathrm{0}} ^{\infty} \left(\frac{{e}^{β\mathrm{2}{x}} }{\mathrm{2}}β\frac{{e}^{β{x}} }{\mathrm{1}+{e}^{β{x}} }\right).\frac{{dx}}{{x}}={ln}\left(\frac{\mathrm{1}}{\:\sqrt{\pi}}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$