Menu Close

advanced-calculus-prove-that-lim-n-1-n-1-n-n-1-n-d-n-dx-n-ln-x-x-x-n-euler-mascheroni-constant-




Question Number 139530 by mnjuly1970 last updated on 28/Apr/21
             .......advanced  calculus......   prove  that::     lim_(n→∞) {(((−1)^(n+1) n^(n+1) )/(n!)) (d^( n) /dx^n )(((ln(x))/x))∣_(x=n) }=γ   γ :   euler −mascheroni constant
.advancedcalculusprovethat::limn{(1)n+1nn+1n!dndxn(ln(x)x)x=n}=γγ:eulermascheroniconstant
Answered by mindispower last updated on 28/Apr/21
(d^n /dx^n )((ln(x))/x)=Σ_(k=0) ^n C_n ^k (ln(x))^k .((1/x))^(n−k) .Libneiz formula  ln(x)^((k)) =ln(x),k=0  =((1/x))^((k−1)) ,k≥1  =(((−1)^(k−1) .(k−1)!)/x^(k−1) ),k≥1  ((1/x))^(n−k) =(((−1)^(n−k) (n−k)!)/x^(n−k+1) )  =(Σ_(k=1) ^n C_n ^k (((−1)^(n−1) (k−1)!.(n−k)!)/x^(n+1) )+ln(x).(((−1)^n n!)/x^(n+1) ))∣_(x=n) .(((−1)^(n+1) n^(n+1) )/(n!))  =Σ_(k≥1) (((−1)^(n−1) )/n^(n+1) ).(((k−1)!.(n−k)!)/n^(n+1) ).((n!)/(k!.(n−k)!)).(((−1)^(n+1) )/(n!))n^(n+1)   +ln(n).(((−1)^n )/n^(n+1) )n!.(((−1)^(n+1) n^(n+1) )/(n!))  =Σ_(k=1) ^n (1/k)−ln(n)  lim_(n→∞) Σ_(k=1) ^n (1/k)−ln(n)=γ   By definition
dndxnln(x)x=nk=0Cnk(ln(x))k.(1x)nk.Libneizformulaln(x)(k)=ln(x),k=0=(1x)(k1),k1=(1)k1.(k1)!xk1,k1(1x)nk=(1)nk(nk)!xnk+1=(nk=1Cnk(1)n1(k1)!.(nk)!xn+1+ln(x).(1)nn!xn+1)x=n.(1)n+1nn+1n!=k1(1)n1nn+1.(k1)!.(nk)!nn+1.n!k!.(nk)!.(1)n+1n!nn+1+ln(n).(1)nnn+1n!.(1)n+1nn+1n!=nk=11kln(n)limnnk=11kln(n)=γBydefinition
Commented by mnjuly1970 last updated on 28/Apr/21
thanks alot sir power ...  mercey....
thanksalotsirpowermercey.
Commented by mindispower last updated on 29/Apr/21
pleasur
pleasur

Leave a Reply

Your email address will not be published. Required fields are marked *