Menu Close

advanced-calculus-prove-that-n-0-1-n-4n-2-1-1-4-2-picsch-pi-2-




Question Number 137307 by mnjuly1970 last updated on 31/Mar/21
        .....advanced    calculus.....      prove  that::      Σ_(n=0) ^∞ ((((−1)^n )/(4n^2 +1)))=(1/4)(2+πcsch((π/2)))        ............................
..advancedcalculus..provethat::n=0((1)n4n2+1)=14(2+πcsch(π2)).
Answered by Dwaipayan Shikari last updated on 31/Mar/21
1−(1/5)+(1/(17))−(1/(37))+(1/(65))−(1/(101))+...  1,17,65  g_n =an^2 +bn+c⇒g_0 =c=1  g_1 =a+b+c=17⇒a+b=16  g_2 =4a+2b+1=65⇒2a+b=32⇒a=16   b=0 c=1 ⇒g_n =16n^2 +1  5,37,101    g_n =(4n+2)^2 +1  Σ_(n=0) ^∞ (1/(16n^2 +1))−(1/(16n^2 +16n+5))  =(1/(16))((π/(2.(1/4)))coth((π/4))−(1/(2.(1/(16)))))−(1/(4i(√5)))Σ_(n=0) ^∞ (1/((n−(((−4+i(√5))/8)))))−(1/((n−(((−4−i(√5))/8)))))  =(π/8)coth((π/4))−(1/2)−(1/(4i(√5)))(ψ((1/2)+((i(√5))/4))−ψ((1/2)−((i(√5))/8)))  =(π/8)coth((π/4))−(1/2)+(π/(4i(√5)))cot((1/2)+((i(√5))/8))π  =(π/8)coth((π/4))−(1/2)−(π/( 4(√5)))tanh(((√5)/8)π)  :(
115+117137+1651101+1,17,65gn=an2+bn+cg0=c=1g1=a+b+c=17a+b=16g2=4a+2b+1=652a+b=32a=16b=0c=1gn=16n2+15,37,101gn=(4n+2)2+1n=0116n2+1116n2+16n+5=116(π2.14coth(π4)12.116)14i5n=01(n(4+i58))1(n(4i58))=π8coth(π4)1214i5(ψ(12+i54)ψ(12i58))=π8coth(π4)12+π4i5cot(12+i58)π=π8coth(π4)12π45tanh(58π):(

Leave a Reply

Your email address will not be published. Required fields are marked *