Menu Close

advanced-calculus-prove-that-n-0-n-1-2-n-1-2-2-n-n-2pi-ln-2-




Question Number 133228 by mnjuly1970 last updated on 20/Feb/21
                   ....advanced    calculus....     prove  that ::         Σ_(n=0) ^∞ ((Γ(n+(1/2))ψ(n+(1/2)))/(2^n .n!))=−(√(2π)) (γ+ln(2))....
.advancedcalculus.provethat::n=0Γ(n+12)ψ(n+12)2n.n!=2π(γ+ln(2)).
Answered by Dwaipayan Shikari last updated on 20/Feb/21
Σ_(n=0) ^∞ ((Γ′(n+(1/2)))/(2^n n!))=Σ_(n=0) ^∞ (1/(2^n n!))∫_0 ^∞ x^(n−(1/2)) e^(−x) log(x)  =∫_0 ^∞ Σ_(n=0) ^∞ ((((x/2))^n )/(n!))x^(−(1/2)) e^(−x) log(x)  =∫_0 ^∞ e^(x/2) x^(−(1/2)) e^(−x) log(x)dx =∫_0 ^∞ x^(−(1/2)) e^(−(x/2)) log(x)dx        =(√2)∫_0 ^∞ u^(−(1/2)) e^(−u) log(2u)=(√(2π)) log(2)+(√2)Γ′((1/2))  =(√(2π)) log(2)+(√(2π)) (−γ−2log(2))  =−(√(2π)) (γ+log(2))
n=0Γ(n+12)2nn!=n=012nn!0xn12exlog(x)=0n=0(x2)nn!x12exlog(x)=0ex2x12exlog(x)dx=0x12ex2log(x)dx=20u12eulog(2u)=2πlog(2)+2Γ(12)=2πlog(2)+2π(γ2log(2))=2π(γ+log(2))
Commented by mnjuly1970 last updated on 20/Feb/21
very nice   thank you mr payan...
verynicethankyoumrpayan

Leave a Reply

Your email address will not be published. Required fields are marked *