advanced-calculus-prove-that-n-0-n-1-x-1-n-1-n-x-2-x-1-proof-n-0-n-1-x-1-n-1-n-0- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 137668 by mnjuly1970 last updated on 05/Apr/21 …….advanced…………calculus….provethat:::::∗∗∗∗∗Ω=∑∞n=0Γ(n+1)Γ(x+1)(n+1)Γ(n+x+2)=ψ′(x+1)proof::Ω=∑∞n=0β(n+1,x+1)n+1=∑∞n=0{1(n+1)∫01tn.(1−t)xdt}=∫01{(1−t)x∑∞n=0tnn+1dt}=∫01{(1−t)x∑∞n=1tn−1ndt}=−∫01(1−t)xln(1−t)tdt=−∫01txln(t)1−tdt=∂∂x∫011−tx1−tdt=ψ′(1+x)…..✓✓…….Ω=ψ′(1+x)…… Commented by Dwaipayan Shikari last updated on 05/Apr/21 ∑∞n=0Γ(n+1)Γ(1)(n+1)Γ(n+2)=∑∞n=01n2=π26=ψ′(1)∑∞n=0Γ(n+1)Γ(2)(n+1)Γ(n+3)=∑∞n=11n2(n+1)=π26−1=ψ′(2)… Commented by mnjuly1970 last updated on 05/Apr/21 grateful..thankyousomuchmrpayan… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-6593Next Next post: Prove-that-j-1-N-X-j-1-2-j-1-N-X-j-2-2-j-1-N-X-j-N- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.