Menu Close

advanced-calculus-prove-that-n-0-n-1-x-1-n-1-n-x-2-x-1-proof-n-0-n-1-x-1-n-1-n-0-




Question Number 137668 by mnjuly1970 last updated on 05/Apr/21
              .......advanced ... ... ... ... calculus....    prove that::::: ∗∗∗∗∗      𝛀=Σ_(n=0) ^∞ ((Γ(n+1)Γ(x+1))/((n+1)Γ(n+x+2)))=ψ′(x+1)  proof::      Ω=Σ_(n=0 ) ^∞ ((β (n+1,x+1))/(n+1))=Σ_(n=0) ^∞ {(1/((n+1)))∫_0 ^( 1) t^n .(1−t)^x dt}   =∫_0 ^( 1) {(1−t)^x Σ_(n=0 ) ^∞ (t^n /(n+1))dt}   =∫_0 ^( 1) {(1−t)^x Σ_(n=1) ^∞ (t^(n−1) /n)dt}   =−∫_0 ^( 1) (((1−t)^x ln(1−t))/t)dt=−∫_0 ^( 1) ((t^x ln(t))/(1−t))dt  = (∂/∂x)∫_0 ^( 1) ((1−t^x )/(1−t))dt=ψ′(1+x) .....✓✓                .......  𝛀= ψ′(1+x) ......
.advancedcalculus.provethat:::::Ω=n=0Γ(n+1)Γ(x+1)(n+1)Γ(n+x+2)=ψ(x+1)proof::Ω=n=0β(n+1,x+1)n+1=n=0{1(n+1)01tn.(1t)xdt}=01{(1t)xn=0tnn+1dt}=01{(1t)xn=1tn1ndt}=01(1t)xln(1t)tdt=01txln(t)1tdt=x011tx1tdt=ψ(1+x)...Ω=ψ(1+x)
Commented by Dwaipayan Shikari last updated on 05/Apr/21
Σ_(n=0) ^∞ ((Γ(n+1)Γ(1))/((n+1)Γ(n+2)))=Σ_(n=0) ^∞ (1/n^2 )=(π^2 /6)=ψ′(1)  Σ_(n=0) ^∞ ((Γ(n+1)Γ(2))/((n+1)Γ(n+3)))=Σ_(n=1) ^∞ (1/(n^2 (n+1)))=(π^2 /6)−1 =ψ′(2)  ...
n=0Γ(n+1)Γ(1)(n+1)Γ(n+2)=n=01n2=π26=ψ(1)n=0Γ(n+1)Γ(2)(n+1)Γ(n+3)=n=11n2(n+1)=π261=ψ(2)
Commented by mnjuly1970 last updated on 05/Apr/21
   grateful..    thank you so much mr payan...
grateful..thankyousomuchmrpayan

Leave a Reply

Your email address will not be published. Required fields are marked *