Menu Close

Advanced-calculus-prove-that-P-n-1-1-1-n-4-sin-pi-sinh-pi-pi-2-




Question Number 134435 by mnjuly1970 last updated on 03/Mar/21
                 ....Advanced  calculus....      prove that::                   P=Π_(n=1) ^∞ (1−(1/n^4 ))=((sin(π).sinh(π))/π^( 2) ) ..✓                     ............. ...........
.Advancedcalculus.provethat::P=n=1(11n4)=sin(π).sinh(π)π2.....
Answered by Dwaipayan Shikari last updated on 03/Mar/21
Π_(n=1) ^∞ (1+(1/n^2 ))Π_(n=1) ^∞ (1−(1/n^2 ))=((sinπ)/(π )).((sinh(π))/π)=((sin(π)sinh(π))/π^2 )=0
n=1(1+1n2)n=1(11n2)=sinππ.sinh(π)π=sin(π)sinh(π)π2=0
Commented by mnjuly1970 last updated on 03/Mar/21
tayeballah sir payan...
tayeballahsirpayan
Answered by mnjuly1970 last updated on 03/Mar/21
    ((sin(πx))/(πx))=Π_(n=1) ^∞ (1−(x^2 /n^2 ))      x:= 1        ∴  ((sin(π))/π)=Π_(n=1) ^∞ (1−(1/n^2 )).....(1)        x: =i        ((sin(πi))/(πi)) =^((i^2 =−1)) Π_(n=1) (1+(1/n^2 ))....(2)          sin(πi)=((e^(−π) −e^π )/(2i)) (∗)........(2^∗ )          (2) and (∗) :⇒ ((sinh(π))/π) =Π_(n=1) ^∞ (1+(1/n^2 )) ....2^∗       (1)×(2)^∗ =((sin(π).sinh(π))/π)=Π_(n=2) ^∞ (1−(1/n^4 ))
sin(πx)πx=n=1(1x2n2)x:=1sin(π)π=n=1(11n2)..(1)x:=isin(πi)πi=(i2=1)n=1(1+1n2).(2)sin(πi)=eπeπ2i()..(2)(2)and():⇒sinh(π)π=n=1(1+1n2).2(1)×(2)=sin(π).sinh(π)π=n=2(11n4)

Leave a Reply

Your email address will not be published. Required fields are marked *