Menu Close

advanced-calculus-prove-that-sin-4-x-cos-4-x-x-2-dx-pi-16-m-n-




Question Number 140956 by mnjuly1970 last updated on 14/May/21
          .....advanced......calculus.....       prove that:    ๐›—:= โˆซ_(โˆ’โˆž) ^( โˆž) ((sin^4 (x).cos^4 (x))/x^2 )dx=(ฯ€/(16))    m.n
โ€ฆ..advancedโ€ฆโ€ฆcalculusโ€ฆ..provethat:ฯ•:=โˆซโˆ’โˆžโˆžsin4(x).cos4(x)x2dx=ฯ€16m.n
Answered by mathmax by abdo last updated on 14/May/21
ฮฆ =2โˆซ_0 ^โˆž  (((sinx.cosx)^4 )/x^2 )dx =(2/2^4 )โˆซ_0 ^โˆž   ((sin^4 (2x))/x^2 )dx  =(1/8)โˆซ_0 ^โˆž  (((((1โˆ’cos(4x))/2))^2 )/x^2 )dx =(1/(32))โˆซ_0 ^โˆž   ((1โˆ’2cos(4x)+((1+cos(8x))/2))/x^2 )dx  =(1/(64))โˆซ_0 ^โˆž   ((2โˆ’4cos(4x)+1+cos(8x))/x^2 )dx  =(1/(64))โˆซ_0 ^โˆž   ((4โˆ’4cos(4x)โˆ’(1โˆ’cos(8x)))/x^2 )dx  =(1/(16))โˆซ_0 ^โˆž  ((1โˆ’cos(4x))/x^2 )dxโˆ’(1/(64))โˆซ_0 ^โˆž ((1โˆ’cos(8x))/x^2 )dx  we have โˆซ_0 ^โˆž  ((1โˆ’cos(4x))/x^2 )dx =_(2x=t)  4 โˆซ_0 ^โˆž ((1โˆ’cos2t)/t^2 )(dt/2)  =2โˆซ_0 ^โˆž ((2sin^2 (t))/t^2 )dt =4โˆซ_0 ^โˆž  ((sin^2 (t))/t^2 )  =4{ [โˆ’(1/t)sin^2 t]_0 ^โˆž +โˆซ_0 ^โˆž  ((2sint.cost)/t) dt}  =4โˆซ_0 ^โˆž  ((sin(2t))/t) dt  =_(2t=z)   4โˆซ_0 ^โˆž  ((sinz)/(z/2))(dz/2) =4.(ฯ€/2)=2ฯ€  โˆซ_0 ^โˆž ((1โˆ’cos(8x))/x^2 ) dx =_(4x=t) 16โˆซ_0 ^โˆž   ((1โˆ’cos(2t))/t^2 )(dt/4)  =4 โˆซ_0 ^โˆž  ((2sin^2 t)/t^2 ) dt =8 โˆซ_0 ^โˆž  ((sin^2 t)/t^2 ) =8.(ฯ€/2)=4ฯ€ โ‡’  ฮฆ =(1/(16))(2ฯ€)โˆ’(1/(64))(4ฯ€) =(ฯ€/8)โˆ’(ฯ€/(16)) =(ฯ€/(16)) โ‡’ฮฆ=(ฯ€/(16))โ˜…
ฮฆ=2โˆซ0โˆž(sinx.cosx)4x2dx=224โˆซ0โˆžsin4(2x)x2dx=18โˆซ0โˆž(1โˆ’cos(4x)2)2x2dx=132โˆซ0โˆž1โˆ’2cos(4x)+1+cos(8x)2x2dx=164โˆซ0โˆž2โˆ’4cos(4x)+1+cos(8x)x2dx=164โˆซ0โˆž4โˆ’4cos(4x)โˆ’(1โˆ’cos(8x))x2dx=116โˆซ0โˆž1โˆ’cos(4x)x2dxโˆ’164โˆซ0โˆž1โˆ’cos(8x)x2dxwehaveโˆซ0โˆž1โˆ’cos(4x)x2dx=2x=t4โˆซ0โˆž1โˆ’cos2tt2dt2=2โˆซ0โˆž2sin2(t)t2dt=4โˆซ0โˆžsin2(t)t2=4{[โˆ’1tsin2t]0โˆž+โˆซ0โˆž2sint.costtdt}=4โˆซ0โˆžsin(2t)tdt=2t=z4โˆซ0โˆžsinzz2dz2=4.ฯ€2=2ฯ€โˆซ0โˆž1โˆ’cos(8x)x2dx=4x=t16โˆซ0โˆž1โˆ’cos(2t)t2dt4=4โˆซ0โˆž2sin2tt2dt=8โˆซ0โˆžsin2tt2=8.ฯ€2=4ฯ€โ‡’ฮฆ=116(2ฯ€)โˆ’164(4ฯ€)=ฯ€8โˆ’ฯ€16=ฯ€16โ‡’ฮฆ=ฯ€16โ˜…
Commented by mnjuly1970 last updated on 14/May/21
    grateful sir max ...thanking
gratefulsirmaxโ€ฆthanking

Leave a Reply

Your email address will not be published. Required fields are marked *