Question Number 141868 by mnjuly1970 last updated on 24/May/21

Commented by mindispower last updated on 24/May/21

Answered by Dwaipayan Shikari last updated on 24/May/21

Commented by mathmax by abdo last updated on 24/May/21
![f(a)=∫_0 ^∞ (e^(−x^2 ) /(x^2 +a^2 ))dx ⇒f(a)=∫_0 ^∞ ∫_0 ^∞ (e^(−t(x^2 +a^2 )) dt)e^(−x^2 ) dx =∫_0 ^∞ ( ∫_0 ^∞ e^(−tx^2 −x^2 ) dx)e^(−ta^2 ) dt [but ∫_0 ^∞ e^(−tx^2 −x^2 ) dx =∫_0 ^∞ e^(−(t+1)x^2 ) dx =_((√(t+1))x=z) ∫_0 ^∞ e^(−z^2 ) (dz/( (√(t+1))))=((√π)/(2(√(t+1)))) ⇒ f(a)=((√π)/2)∫_0 ^∞ (e^(−ta^2 ) /( (√(t+1))))dt =_((√(t+1))=u) ((√π)/2)∫_1 ^∞ (e^(−a^2 (u^2 −1)) /u)(2u)du =(√π)e^a^2 ∫_1 ^∞ e^(−a^2 u^2 ) du ⇒ f^′ (a)=2a(√π)e^a^2 ∫_1 ^∞ e^(−a^2 u^2 ) du +(√π)e^a^2 ∫_1 ^∞ −2au^2 e^(−a^2 u^2 ) du =2a(√π)e^a^2 ∫_1 ^∞ e^(−a^2 u^2 ) du −2a(√π)e^a^2 ∫_1 ^∞ u^2 e^(−a^2 u^2 ) du [also ∫_1 ^∞ e^(−a^2 u^2 ) du =_(au=z) ∫_a ^∞ e^(−z^2 ) (dz/a) and ∫_1 ^∞ u^2 e^(−a^2 u^2 ) du =_(au=z) ∫_a ^∞ (z^2 /a^2 )e^(−z^2 ) (dz/a)=(1/a^3 )∫_a ^∞ z^2 e^(−z^2 ) dz ⇒ f^′ (a)=2(√π)e^a^2 ∫_a ^∞ e^(−z^2 ) dz−((2(√π))/a^2 ) e^a^2 ∫_a ^∞ z^2 e^(−z^2 ) dz f^′ (a)=−2a ∫_0 ^∞ (e^(−x^2 ) /((x^2 +a^2 )^2 ))dx ⇒ −2a ∫_0 ^∞ (e^(−x^2 ) /((x^2 +a^2 )^2 ))dx =2(√π)e^a^2 (∫_a ^∞ e^(−z^2 ) dz−(1/a^2 )∫_a ^∞ z^2 e^(−z^2 ) dz) ⇒ ∫_0 ^∞ (e^(−x^2 ) /((x^2 +a^2 )^2 ))dx =(√π)e^a^2 ((1/a^3 )∫_a ^∞ z^2 e^(−z^2 ) dz−∫_a ^∞ e^(−z^2 ) dz) a=(√3) ⇒∫_0 ^∞ (e^(−x^2 ) /((x^2 +3)^2 ))dx =(√π)e^3 ((1/(3(√3)))∫_(√3) ^∞ z^2 e^(−z^2 ) dz−∫_(√3) ^∞ e^(−z^2 ) dz) a=1 ⇒∫_0 ^∞ (e^(−x^2 ) /((x^2 +1)^2 ))dx=(√π)e(∫_1 ^∞ z^2 e^(−z^2 ) dz−∫_1 ^∞ e^(−z^2 ) dz) we have ∫_1 ^∞ z(ze^(−z^2 ) )dz =−(1/2)∫_1 ^∞ z(−2z e^(−z^2 ) )dz =−(1/2){ [ze^(−z^2 ) ]_1 ^∞ −∫_0 ^∞ ze^(−z^2 ) dz} =−(1/2){e^(−1) −[−(1/2)e^(−z^2 ) ]_1 ^∞ }=−(1/2)(e^(−1) −(1/2)e^(−1) ) =−(1/2)×(1/2)e^(−1) =−(1/(4e)) ....](https://www.tinkutara.com/question/Q141919.png)
Commented by mathmax by abdo last updated on 24/May/21
