Menu Close

Advanced-Calculus-R-e-x-2-1-x-2-2-dx-




Question Number 141868 by mnjuly1970 last updated on 24/May/21
            ......Advanced  .....Calculus........           .....  ∫_( R) ^  (e^(−x^2 ) /((1+x^2 )^2 )) dx=?
Advanced..Calculus....Rex2(1+x2)2dx=?
Commented by mindispower last updated on 24/May/21
sam as 141859  Quation sir ,a=1
samas141859Quationsir,a=1
Answered by Dwaipayan Shikari last updated on 24/May/21
∫_R (e^(−x^2 ) /((1+x^2 )^2 ))dx=2∫_0 ^∞ (e^(−x^2 ) /((1+x^2 )^2 ))dx  =2∫_0 ^∞ ∫_0 ^∞ ue^(−x^2 −ux^2 ) e^(−u) dxdu  =(√π)∫_0 ^∞ (u/( (√(u+1))))e^(−u) du  =2(√π) ∫_1 ^∞ (t^2 −1)e^(−t^2 +1) dt  =2e(√π)( ∫_0 ^∞ t^2 e^(−t^2 ) −∫_0 ^1 t^2 e^(−t^2 ) dt− ∫_0 ^∞ e^(−t^2 ) + ∫_0 ^1 e^(−t^2 ) dt)  =2e(√π)(−((√π)/4))−2e(√π) (((√π)/4)erf(1)−(1/(2e))−((√π)/2)erf(1))  =(√π)−((πe)/2)+((πe)/2)erf(1) =(√π)−((πe)/2)(1−erf(1))=(√𝛑)−((𝛑e)/2)erfc(1)  1−erf(x)=erfc(x)  ∫e^(−t^2 ) dt=((√π)/2)erfc(t)+C  ∫e^(−t^2 ) dt=te^(−t^2 ) +2∫t^2 e^(−t^2 ) dt  ⇒((√π)/4)erfc(t)−(t/2)e^(−t^2 ) =∫t^2 e^(−t^2 ) dt
Rex2(1+x2)2dx=20ex2(1+x2)2dx=200uex2ux2eudxdu=π0uu+1eudu=2π1(t21)et2+1dt=2eπ(0t2et201t2et2dt0et2+01et2dt)=2eπ(π4)2eπ(π4erf(1)12eπ2erf(1))=ππe2+πe2erf(1)=ππe2(1erf(1))=\boldsymbolπ\boldsymbolπe2\boldsymbolerfc(1)1erf(x)=erfc(x)et2dt=π2erfc(t)+Cet2dt=tet2+2t2et2dtπ4erfc(t)t2et2=t2et2dt
Commented by mathmax by abdo last updated on 24/May/21
f(a)=∫_0 ^∞  (e^(−x^2 ) /(x^2  +a^2 ))dx ⇒f(a)=∫_0 ^∞ ∫_0 ^∞  (e^(−t(x^2 +a^2 )) dt)e^(−x^2 ) dx  =∫_0 ^∞ ( ∫_0 ^∞  e^(−tx^2 −x^2 ) dx)e^(−ta^2 ) dt [but  ∫_0 ^∞  e^(−tx^2 −x^2 ) dx =∫_0 ^∞ e^(−(t+1)x^2 ) dx =_((√(t+1))x=z)  ∫_0 ^∞  e^(−z^2 ) (dz/( (√(t+1))))=((√π)/(2(√(t+1)))) ⇒  f(a)=((√π)/2)∫_0 ^∞  (e^(−ta^2 ) /( (√(t+1))))dt =_((√(t+1))=u)   ((√π)/2)∫_1 ^∞  (e^(−a^2 (u^2 −1)) /u)(2u)du  =(√π)e^a^2   ∫_1 ^∞  e^(−a^2 u^2 ) du ⇒  f^′ (a)=2a(√π)e^a^2   ∫_1 ^∞  e^(−a^2 u^2 ) du +(√π)e^a^2  ∫_1 ^∞ −2au^2  e^(−a^2 u^2 )  du  =2a(√π)e^a^2   ∫_1 ^∞  e^(−a^2 u^2 ) du −2a(√π)e^a^2  ∫_1 ^∞  u^2  e^(−a^2 u^2 ) du [also  ∫_1 ^∞  e^(−a^2 u^2 ) du =_(au=z)   ∫_a ^∞  e^(−z^2 ) (dz/a)  and  ∫_1 ^∞  u^2  e^(−a^2 u^2 ) du =_(au=z)   ∫_a ^∞  (z^2 /a^2 )e^(−z^2 ) (dz/a)=(1/a^3 )∫_a ^∞  z^2  e^(−z^2 ) dz ⇒  f^′ (a)=2(√π)e^a^2  ∫_a ^∞ e^(−z^2 ) dz−((2(√π))/a^2 ) e^a^2  ∫_a ^∞  z^2  e^(−z^2 ) dz  f^′ (a)=−2a ∫_0 ^∞  (e^(−x^2 ) /((x^2  +a^2 )^2 ))dx ⇒  −2a ∫_0 ^∞  (e^(−x^2 ) /((x^2  +a^2 )^2 ))dx =2(√π)e^a^2  (∫_a ^∞  e^(−z^2 ) dz−(1/a^2 )∫_a ^∞  z^2  e^(−z^2 ) dz) ⇒  ∫_0 ^∞  (e^(−x^2 ) /((x^2  +a^2 )^2 ))dx =(√π)e^a^2  ((1/a^3 )∫_a ^∞  z^2  e^(−z^2 ) dz−∫_a ^∞  e^(−z^2 ) dz)  a=(√3) ⇒∫_0 ^∞   (e^(−x^2 ) /((x^2 +3)^2 ))dx =(√π)e^3 ((1/(3(√3)))∫_(√3) ^∞  z^2  e^(−z^2 ) dz−∫_(√3) ^∞ e^(−z^2 ) dz)  a=1 ⇒∫_0 ^∞  (e^(−x^2 ) /((x^2  +1)^2 ))dx=(√π)e(∫_1 ^∞  z^2 e^(−z^2 ) dz−∫_1 ^∞  e^(−z^2 ) dz)  we have ∫_1 ^∞  z(ze^(−z^2 ) )dz =−(1/2)∫_1 ^∞ z(−2z e^(−z^2 ) )dz  =−(1/2){ [ze^(−z^2 ) ]_1 ^∞ −∫_0 ^∞ ze^(−z^2 )  dz}  =−(1/2){e^(−1) −[−(1/2)e^(−z^2 ) ]_1 ^∞ }=−(1/2)(e^(−1) −(1/2)e^(−1) )  =−(1/2)×(1/2)e^(−1)  =−(1/(4e)) ....
f(a)=0ex2x2+a2dxf(a)=00(et(x2+a2)dt)ex2dx=0(0etx2x2dx)eta2dt[but0etx2x2dx=0e(t+1)x2dx=t+1x=z0ez2dzt+1=π2t+1f(a)=π20eta2t+1dt=t+1=uπ21ea2(u21)u(2u)du=πea21ea2u2duf(a)=2aπea21ea2u2du+πea212au2ea2u2du=2aπea21ea2u2du2aπea21u2ea2u2du[also1ea2u2du=au=zaez2dzaand1u2ea2u2du=au=zaz2a2ez2dza=1a3az2ez2dzf(a)=2πea2aez2dz2πa2ea2az2ez2dzf(a)=2a0ex2(x2+a2)2dx2a0ex2(x2+a2)2dx=2πea2(aez2dz1a2az2ez2dz)0ex2(x2+a2)2dx=πea2(1a3az2ez2dzaez2dz)a=30ex2(x2+3)2dx=πe3(1333z2ez2dz3ez2dz)a=10ex2(x2+1)2dx=πe(1z2ez2dz1ez2dz)wehave1z(zez2)dz=121z(2zez2)dz=12{[zez2]10zez2dz}=12{e1[12ez2]1}=12(e112e1)=12×12e1=14e.
Commented by mathmax by abdo last updated on 24/May/21
sorry   ∫_0 ^∞  (e^(−x^2 ) /((x^2  +a^2 )^2 ))dx=(√π)e^a^2  ((1/a^3 )∫_a ^∞  z^2  e^(−z^2 ) dz−(1/a)∫_a ^∞  e^(−z^2 ) dz)
sorry0ex2(x2+a2)2dx=πea2(1a3az2ez2dz1aaez2dz)sorry0ex2(x2+a2)2dx=πea2(1a3az2ez2dz1aaez2dz)

Leave a Reply

Your email address will not be published. Required fields are marked *