Menu Close

Advanced-Calculus-simplify-n-k-1-2n-1-log-1-tan-kpi-4-2n-1-moreover-find-the-value-of-lim-n-n-n-




Question Number 137397 by mnjuly1970 last updated on 02/Apr/21
 .......Advanced ...  ...  ... Calculus.......   simplify :::   Ω_n =Σ_(k=1) ^(2n+1) log(1+tan(((kπ)/(4(2n+1)))))   moreover ,    find the value of::  Ω= lim_(n→∞) (Ω_n /n) =???
.AdvancedCalculus.simplify:::Ωn=2n+1k=1log(1+tan(kπ4(2n+1)))moreover,findthevalueof::Ω=limnΩnn=???
Answered by mindispower last updated on 02/Apr/21
=Σ_(k=0) ^(2n+1) log(1+tg(((kπ)/(4(2n+1))))=Σ_(k=0) ^(2n+1) log(1+tg((π/4)−((kπ)/(4(2n+1)))))  ∴ln(1)=0,Σ_(l=m) ^p f(l)=Σf(p+m−l)  =Σ_(k=0) ^(2n+1) log(1+((1−tg(((kπ)/(4(2n+1)))))/(1+tg(((kπ)/(4(2n+1)))))))  =Σ_(k=0) ^(2n+1) log((2/(1+tg(((kπ)/(4(2n+1)))))))=Σ_(k=0) ^(2n+1) log(2)−^ Ω_n   ⇒2Ω_n =(2n+2)log(2)⇒Ω_n =(n+1)log(2)  (Ω_n /n)=(1+(1/n))log(2)⇒lim_(n→∞) (Ω_n /n)=log(2)
=2n+1k=0log(1+tg(kπ4(2n+1))=2n+1k=0log(1+tg(π4kπ4(2n+1)))ln(1)=0,pl=mf(l)=Σf(p+ml)=2n+1k=0log(1+1tg(kπ4(2n+1))1+tg(kπ4(2n+1)))=2n+1k=0log(21+tg(kπ4(2n+1)))=2n+1k=0log(2)Ωn2Ωn=(2n+2)log(2)Ωn=(n+1)log(2)Ωnn=(1+1n)log(2)limnΩnn=log(2)
Commented by mnjuly1970 last updated on 02/Apr/21
 very nice mr power   grateful...
verynicemrpowergrateful
Answered by mnjuly1970 last updated on 02/Apr/21
  Ω_n =Σ_(k=0) ^n log(1+tan(((kπ)/(4(2n+1)))))+Σ_(k=n+1) ^(2n+1) log(1+tan(((kπ)/(4(2n+1)))))  =Σ_(k=0) ^n log(1+tan(((kπ)/(4(2n+1)))))+Σ_(k=0) ^n log(1+tan((((2n+1−k)π)/(4(2n+1)))))  =Σ_(k=0) ^n log(1+tan(((kπ)/(4(2n+1)))))+Σ_(k=0) ^n log(1+((1−tan(((kπ)/(4(2n+1))))/(1+tan(((kπ)/(4(2n+1)))))))  =(n+1)log(2) ....✓   ... (Ω_n /n)=((n+1)/n)log(2)⇒ lim_(n→∞) (Ω_n /n)=log(2)            .....Ω=log(2).....✓     hint:Σ_(r=k) ^n a(r)=a(k)+a(k+1)+...+a(n)  =Σ_(r=0) ^(n−k) a(n−r)  ✓
Ωn=nk=0log(1+tan(kπ4(2n+1)))+2n+1k=n+1log(1+tan(kπ4(2n+1)))=nk=0log(1+tan(kπ4(2n+1)))+nk=0log(1+tan((2n+1k)π4(2n+1)))=nk=0log(1+tan(kπ4(2n+1)))+nk=0log(1+1tan(kπ4(2n+1)1+tan(kπ4(2n+1)))=(n+1)log(2).Ωnn=n+1nlog(2)limnΩnn=log(2)..Ω=log(2)..hint:nr=ka(r)=a(k)+a(k+1)++a(n)=nkr=0a(nr)

Leave a Reply

Your email address will not be published. Required fields are marked *