Menu Close

Advanced-Calculus-simplify-n-k-1-2n-1-log-1-tan-kpi-4-2n-1-moreover-find-the-value-of-lim-n-n-n-




Question Number 137397 by mnjuly1970 last updated on 02/Apr/21
 .......Advanced ...  ...  ... Calculus.......   simplify :::   Ω_n =Σ_(k=1) ^(2n+1) log(1+tan(((kπ)/(4(2n+1)))))   moreover ,    find the value of::  Ω= lim_(n→∞) (Ω_n /n) =???
$$\:…….\mathscr{A}{dvanced}\:…\:\:…\:\:…\:\mathscr{C}{alculus}……. \\ $$$$\:{simplify}\:::: \\ $$$$\:\Omega_{{n}} =\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}{log}\left(\mathrm{1}+{tan}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)\right) \\ $$$$\:{moreover}\:,\:\:\:\:{find}\:{the}\:{value}\:{of}:: \\ $$$$\Omega=\:{lim}_{{n}\rightarrow\infty} \frac{\Omega_{{n}} }{{n}}\:=??? \\ $$
Answered by mindispower last updated on 02/Apr/21
=Σ_(k=0) ^(2n+1) log(1+tg(((kπ)/(4(2n+1))))=Σ_(k=0) ^(2n+1) log(1+tg((π/4)−((kπ)/(4(2n+1)))))  ∴ln(1)=0,Σ_(l=m) ^p f(l)=Σf(p+m−l)  =Σ_(k=0) ^(2n+1) log(1+((1−tg(((kπ)/(4(2n+1)))))/(1+tg(((kπ)/(4(2n+1)))))))  =Σ_(k=0) ^(2n+1) log((2/(1+tg(((kπ)/(4(2n+1)))))))=Σ_(k=0) ^(2n+1) log(2)−^ Ω_n   ⇒2Ω_n =(2n+2)log(2)⇒Ω_n =(n+1)log(2)  (Ω_n /n)=(1+(1/n))log(2)⇒lim_(n→∞) (Ω_n /n)=log(2)
$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}{log}\left(\mathrm{1}+{tg}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)=\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}{log}\left(\mathrm{1}+{tg}\left(\frac{\pi}{\mathrm{4}}−\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)\right)\right. \\ $$$$\therefore{ln}\left(\mathrm{1}\right)=\mathrm{0},\underset{{l}={m}} {\overset{{p}} {\sum}}{f}\left({l}\right)=\Sigma{f}\left({p}+{m}−{l}\right) \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}{log}\left(\mathrm{1}+\frac{\mathrm{1}−{tg}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)}{\mathrm{1}+{tg}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)}\right) \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}{log}\left(\frac{\mathrm{2}}{\mathrm{1}+{tg}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)}\right)=\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}{log}\left(\mathrm{2}\right)−^{} \Omega_{{n}} \\ $$$$\Rightarrow\mathrm{2}\Omega_{{n}} =\left(\mathrm{2}{n}+\mathrm{2}\right){log}\left(\mathrm{2}\right)\Rightarrow\Omega_{{n}} =\left({n}+\mathrm{1}\right){log}\left(\mathrm{2}\right) \\ $$$$\frac{\Omega_{{n}} }{{n}}=\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right){log}\left(\mathrm{2}\right)\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\Omega_{{n}} }{{n}}={log}\left(\mathrm{2}\right) \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 02/Apr/21
 very nice mr power   grateful...
$$\:{very}\:{nice}\:{mr}\:{power} \\ $$$$\:{grateful}… \\ $$
Answered by mnjuly1970 last updated on 02/Apr/21
  Ω_n =Σ_(k=0) ^n log(1+tan(((kπ)/(4(2n+1)))))+Σ_(k=n+1) ^(2n+1) log(1+tan(((kπ)/(4(2n+1)))))  =Σ_(k=0) ^n log(1+tan(((kπ)/(4(2n+1)))))+Σ_(k=0) ^n log(1+tan((((2n+1−k)π)/(4(2n+1)))))  =Σ_(k=0) ^n log(1+tan(((kπ)/(4(2n+1)))))+Σ_(k=0) ^n log(1+((1−tan(((kπ)/(4(2n+1))))/(1+tan(((kπ)/(4(2n+1)))))))  =(n+1)log(2) ....✓   ... (Ω_n /n)=((n+1)/n)log(2)⇒ lim_(n→∞) (Ω_n /n)=log(2)            .....Ω=log(2).....✓     hint:Σ_(r=k) ^n a(r)=a(k)+a(k+1)+...+a(n)  =Σ_(r=0) ^(n−k) a(n−r)  ✓
$$\:\:\Omega_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{log}\left(\mathrm{1}+{tan}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)\right)+\underset{{k}={n}+\mathrm{1}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}{log}\left(\mathrm{1}+{tan}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)\right) \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{log}\left(\mathrm{1}+{tan}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)\right)+\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{log}\left(\mathrm{1}+{tan}\left(\frac{\left(\mathrm{2}{n}+\mathrm{1}−{k}\right)\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)\right) \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{log}\left(\mathrm{1}+{tan}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)\right)+\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{log}\left(\mathrm{1}+\frac{\mathrm{1}−{tan}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right.}\right)}{\mathrm{1}+{tan}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)}\right) \\ $$$$=\left({n}+\mathrm{1}\right){log}\left(\mathrm{2}\right)\:….\checkmark \\ $$$$\:…\:\frac{\Omega_{{n}} }{{n}}=\frac{{n}+\mathrm{1}}{{n}}{log}\left(\mathrm{2}\right)\Rightarrow\:{lim}_{{n}\rightarrow\infty} \frac{\Omega_{{n}} }{{n}}={log}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:…..\Omega={log}\left(\mathrm{2}\right)…..\checkmark \\ $$$$\:\:\:{hint}:\underset{{r}={k}} {\overset{{n}} {\sum}}{a}\left({r}\right)={a}\left({k}\right)+{a}\left({k}+\mathrm{1}\right)+…+{a}\left({n}\right) \\ $$$$=\underset{{r}=\mathrm{0}} {\overset{{n}−{k}} {\sum}}{a}\left({n}−{r}\right)\:\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *