Menu Close

Advanced-Calculus-sin-1-x-3-x-dx-solution-1-x-t-2-0-sin-t-3-1-t-dt-t




Question Number 136803 by mnjuly1970 last updated on 26/Mar/21
                         .....Advanced    ◂.............▶   Calculus.....       𝛗=∫_(−∞) ^( ∞) ((sin((1/x^3 )))/x)dx=......???       solution::        𝛗=^((1/x) =t)  2∫_0 ^( ∞) ((sin(t^3 ))/(1/t)).(dt/t^2 ) .............            =2∫_0 ^( ∞) ((sin(t^3 ))/t)dt .........            =^(t^3 =y)  (2/3)∫_0 ^( ∞) ((sin(y))/y^(1/3) ).(dy/y^(2/3) )=(2/3)∫_0 ^( ∞) ((sin(y))/y)      =^(⟨∫_0 ^( ∞) ((sin(r))/r)dr =(π/2)⟩)  (π/3) ...........                        ........𝛗=∫_(−∞) ^( ∞) ((sin((1/x))^3 )/x)dx=(π/3)  ........✓✓✓
..Advanced.Calculus..ϕ=sin(1x3)xdx=???solution::ϕ=1x=t20sin(t3)1t.dtt2.=20sin(t3)tdt=t3=y230sin(y)y13.dyy23=230sin(y)y=0sin(r)rdr=π2π3....ϕ=sin(1x)3xdx=π3..
Answered by Ar Brandon last updated on 26/Mar/21
φ=∫_(−∞) ^∞ ((sin((1/x^3 )))/x)dx=2∫_0 ^∞ x^(−1) sin(x^(−3) )dx     =2∙(1/(∣−3∣))∙(π/(2Γ(1−((1−1)/(−3)))sin[(1−((1−1)/(−3)))(π/2)]))=(π/3)
ϕ=sin(1x3)xdx=20x1sin(x3)dx=213π2Γ(1113)sin[(1113)π2]=π3

Leave a Reply

Your email address will not be published. Required fields are marked *