Menu Close

Advanced-Integral-Prove-that-0-1-1-x-1-x-x-2-log-x-dx-proof-0-1-1-x-2-1-x-3-log-x-dx-f-a




Question Number 142275 by mnjuly1970 last updated on 29/May/21
                    .......Advanced  ...∗∗∗∗∗ ...Integral......        Prove  that ::   Φ :=∫_0 ^( 1) ((1−x)/((1−x+x^2 )log(x)))dx=     proof::        Φ:=∫_0 ^( 1) ((1−x^2 )/((1−x^3 )log(x)))dx        f (a):= ∫_0 ^( 1) ((1−x^a )/((1−x^3 )log(x)))         Φ := f (2) ........✓         f ′(a):=∫_0 ^( 1) ((−x^a log(x))/((1−x^3 )log(x)))=∫_0 ^( 1) ((−x^a )/(1−x^3 ))dx  (★)      (★)::  x^3 =y ⇒ f ′(a):=(1/3)∫_0 ^( 1) ((y^((−2)/3) −y^((a/3)−(2/3)) )/(1−y))dy                :=(1/3)∫_0 ^( 1) ((y^((−2)/3) −1+1−y^((a/3)−(1/3)) )/(1−y))dy                :=(1/3)(ψ((a/3)+(2/3))−ψ((2/3)))         f (a):=log(Γ((a/3)+(2/3)))−(a/3)ψ((2/3))+C          f (0):=0=log(Γ((2/3)))+C           C :=−log(Γ((2/3)))           Φ:= f (2)=log(Γ((4/3)))−(2/3) ψ((2/3))−log(Γ((2/3)))           :=log(((Γ((4/3)))/(Γ((2/3)))))−(2/3)ψ((2/3)) ....✓
.AdvancedIntegralProvethat::Φ:=011x(1x+x2)log(x)dx=proof::Φ:=011x2(1x3)log(x)dxf(a):=011xa(1x3)log(x)Φ:=f(2)..f(a):=01xalog(x)(1x3)log(x)=01xa1x3dx()()::x3=yf(a):=1301y23ya3231ydy:=1301y231+1ya3131ydy:=13(ψ(a3+23)ψ(23))f(a):=log(Γ(a3+23))a3ψ(23)+Cf(0):=0=log(Γ(23))+CC:=log(Γ(23))Φ:=f(2)=log(Γ(43))23ψ(23)log(Γ(23)):=log(Γ(43)Γ(23))23ψ(23).

Leave a Reply

Your email address will not be published. Required fields are marked *