Advanced-Integral-Prove-that-0-1-1-x-1-x-x-2-log-x-dx-proof-0-1-1-x-2-1-x-3-log-x-dx-f-a Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 142275 by mnjuly1970 last updated on 29/May/21 …….Advanced…∗∗∗∗∗…Integral……Provethat::Φ:=∫011−x(1−x+x2)log(x)dx=proof::Φ:=∫011−x2(1−x3)log(x)dxf(a):=∫011−xa(1−x3)log(x)Φ:=f(2)……..✓f′(a):=∫01−xalog(x)(1−x3)log(x)=∫01−xa1−x3dx(★)(★)::x3=y⇒f′(a):=13∫01y−23−ya3−231−ydy:=13∫01y−23−1+1−ya3−131−ydy:=13(ψ(a3+23)−ψ(23))f(a):=log(Γ(a3+23))−a3ψ(23)+Cf(0):=0=log(Γ(23))+CC:=−log(Γ(23))Φ:=f(2)=log(Γ(43))−23ψ(23)−log(Γ(23)):=log(Γ(43)Γ(23))−23ψ(23)….✓ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: e-x-cosx-dx-Next Next post: f-x-x-x-1-x-x-1-1-x-1-x-1-2x-g-x-1-2-x-why-is-f-x-g-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.