Menu Close

Advanced-Mathematics-Evaluate-n-1-coth-pin-n-3-




Question Number 143428 by mnjuly1970 last updated on 14/Jun/21
       ...Advanced ......Mathematics...       Evaluate::               ๐›— :=ฮฃ_(n=1) ^โˆž ((coth(ฯ€n))/n^3 ) =?
โ€ฆAdvancedโ€ฆโ€ฆMathematicsโ€ฆEvaluate::ฯ•:=โˆ‘โˆžn=1coth(ฯ€n)n3=?
Answered by mindispower last updated on 16/Jun/21
let f(z)=((ฯ€coth(ฯ€z)cot(ฯ€z))/z^3 )  pols of f are {ik,k;kโˆˆZ}  let C_R :{Re^(iฮธ) ,ฮธโˆˆ[0,2ฯ€[}  we use the reisidus theorem  withe the fact that coth,cot are bounded  โ‡’  lim_(Rโ†’โˆž) โˆซ_C_R  f(z)dz=0  Residue theremโ‡’ฮฃRes(f)=0  Res(f,k)=lim_(xโ†’k) (xโˆ’k).ฯ€((coth(ฯ€x)cot(ฯ€x))/x^3 )=((coth(ฯ€k))/k^3 ),kโ‰ 0  Res(f,ik)=((coth(ฯ€k))/k^3 ),kโ‰ 0  โ‡’ฮฃ_(kโˆˆZโˆ’{0}) .((coth(ฯ€k))/k^3 )+ฮฃ_(kโˆˆZโˆ’{0}) ((coth(ฯ€k))/k^3 )+Res(f,0)=0  โ‡’4ฮฃ_(kโ‰ฅ1) ((coth(ฯ€k))/k^3 )=โˆ’Res(f,0)  Res(f,0)  cotan(ฯ€x)=(1/(ฯ€x))โˆ’((ฯ€x)/3)โˆ’((ฯ€^3 x^3 )/(45))+0(x^3 )  coth(ฯ€x)=icot(iฯ€x)=(1/(ฯ€x))+((ฯ€x)/3)โˆ’(ฯ€^3 /(45))x^3   Res(f,0),coeficuent of (1/x)in ฯ€((coth(ฯ€x)cot(ฯ€x))/x^3 )  =(ฯ€/x^3 )(โˆ’(ฯ€^2 /9)โˆ’2(ฯ€^2 /(45)))x^2 =โˆ’((7ฯ€^3 )/(45))  4ฮฃ_(nโ‰ฅ1) ((coth(ฯ€n))/n^3 )=โˆ’.โˆ’((7ฯ€^3 )/(45))  ฮฃ_(nโ‰ฅ1) ((coth(ฯ€n))/n^3 )=((7ฯ€^3 )/(180))
letf(z)=ฯ€coth(ฯ€z)cot(ฯ€z)z3polsoffare{ik,k;kโˆˆZ}letCR:{Reiฮธ,ฮธโˆˆ[0,2ฯ€[}weusethereisidustheoremwithethefactthatcoth,cotareboundedโ‡’limRโ†’โˆžโˆซCRf(z)dz=0Residuetheremโ‡’ฮฃRes(f)=0Res(f,k)=limxโ†’k(xโˆ’k).ฯ€coth(ฯ€x)cot(ฯ€x)x3=coth(ฯ€k)k3,kโ‰ 0Res(f,ik)=coth(ฯ€k)k3,kโ‰ 0โ‡’โˆ‘kโˆˆZโˆ’{0}.coth(ฯ€k)k3+โˆ‘kโˆˆZโˆ’{0}coth(ฯ€k)k3+Res(f,0)=0โ‡’4โˆ‘kโฉพ1coth(ฯ€k)k3=โˆ’Res(f,0)Res(f,0)cotan(ฯ€x)=1ฯ€xโˆ’ฯ€x3โˆ’ฯ€3x345+0(x3)coth(ฯ€x)=icot(iฯ€x)=1ฯ€x+ฯ€x3โˆ’ฯ€345x3Res(f,0),coeficuentof1xinฯ€coth(ฯ€x)cot(ฯ€x)x3=ฯ€x3(โˆ’ฯ€29โˆ’2ฯ€245)x2=โˆ’7ฯ€3454โˆ‘nโฉพ1coth(ฯ€n)n3=โˆ’.โˆ’7ฯ€345โˆ‘nโฉพ1coth(ฯ€n)n3=7ฯ€3180

Leave a Reply

Your email address will not be published. Required fields are marked *